75 research outputs found

    Implementation of Technology in Nursing Homes to Combat Psychosocial Effects of COVID-19

    Get PDF
    Because nursing home residents are particularly vulnerable to COVID-19, it is essential to implement significant isolation measures in nursing homes to reduce chances of exposure. While isolation is the best way to keep these individuals safe, there is evidence of negative social and psychological effects. We examine the ethical considerations revolving the decision to isolate nursing home residents, explore the negative social and psychological effects, and propose various technologies that combat these effects. The use of interactive software and video-calling technology proves effective in reducing negative psychosocial symptoms and improves the quality of life for nursing home residents

    Functional and structural reliability of optic nerve head measurements in healthy eyes by means of optical coherence tomography angiography

    Get PDF
    Background and Objectives: the aim of the study was to evaluate the repeatability and reproducibility of optical microangiography (OMAG)-based optical coherence tomography angiography (OCTA) in the optic nerve head (ONH) and radial peripapillary capillary (RPC) perfusion assessment of healthy eyes. Materials and Methods: in this observational study, a total of 40 healthy subjects underwent ONH evaluation, using an OMAG-based OCTA system at baseline (T0), after 30 min (T1), and after 7 days (T2). The main outcome measures were the vessel density (VD) and flux index (FI) of the RPCs, as well as peri-papillary retinal nerve fibre layer (pRNFL) thickness. The analysis was performed by two observers independently. The coefficient of repeatability (CR), within the subject coefficient of variation (CVw) and intrasession correlation coefficient (ICC), to evaluate intrasession repeatability of measurements was calculated for each observer. Results: the high intrasession and intersession repeatability and reproducibility were assessed in the two observers for all three outcome measures. Of note, the CRs for the first and the second observer were 0.011 (95% confidence interval (CI) 0.009–0.014) and 0.016 (95% CI 0.013–0.020) for FI, 0.016 (95% CI 0.013–0.021) and 0.017 (95% CI 0.014–0.021) for VD, and 2.400 (95% CI 1.948–3.092) and 3.732 (95% CI 3.064–4.775) for pRNFL thickness, respectively. The agreement between them was excellent for pRNFL assessment and very good for FI and VD. Conclusion: OCTA has a great potential in the accurate assessment of ONH and peri-papillary microcirculation. It allows for repeated and reproducible measurements without multiple scans-related bias, thus guaranteeing an independent operator analysis with good reproducibility and repeatability

    Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells

    Get PDF
    Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with β1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with β1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.Fil: Sampayo, Rocío Guadalupe. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Toscani, Andrés Martin. Universidad Nacional de Luján; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rubashkin, Matthew G.. University of California; Estados UnidosFil: Thi, Kate. Lawrence Berkeley National Laboratory; Estados UnidosFil: Masullo, Luciano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Violi, Ianina Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Lakins, Jonathon N.. University of California; Estados UnidosFil: Caceres, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Hines, William C.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Coluccio Leskow, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Luján; ArgentinaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Chialvo, Dante Renato. Universidad de Buenos Aires; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaFil: Bissell, Mina J.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Weaver, Valerie M.. University of California; Estados UnidosFil: Simian, Marina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentin

    Lysosomal Function Is Involved in 17β-Estradiol-Induced Estrogen Receptor α Degradation and Cell Proliferation.

    No full text
    The homeostatic control of the cellular proteome steady-state is dependent either on the 26S proteasome activity or on the lysosome function. The sex hormone 17β-estradiol (E2) controls a plethora of biological functions by binding to the estrogen receptor α (ERα), which is both a nuclear ligand-activated transcription factor and also an extrinsic plasma membrane receptor. Regulation of E2-induced physiological functions (e.g., cell proliferation) requires the synergistic activation of both transcription of estrogen responsive element (ERE)-containing genes and rapid extra-nuclear phosphorylation of many different signalling kinases (e.g., ERK/MAPK; PI3K/AKT). Although E2 controls ERα intracellular content and activity via the 26S proteasome-mediated degradation, biochemical and microscopy-based evidence suggests a possible cross-talk among lysosomes and ERα activities. Here, we studied the putative localization of endogenous ERα to lysosomes and the role played by lysosomal function in ERα signalling. By using confocal microscopy and biochemical assays, we report that ERα localizes to lysosomes and to endosomes in an E2-dependent manner. Moreover, the inhibition of lysosomal function obtained by chloroquine demonstrates that, in addition to 26S proteasome-mediated receptor elimination, lysosome-based degradation also contributes to the E2-dependent ERα breakdown. Remarkably, the lysosome function is further involved in those ERα activities required for E2-dependent cell proliferation while it is dispensable for ERα-mediated ERE-containing gene transcription. Our discoveries reveal a novel lysosome-dependent degradation pathway for ERα and show a novel biological mechanism by which E2 regulates ERα cellular content and, as a consequence, cellular functions

    Neuroglobin, a pro-survival player in estrogen receptor a-positive cancer cells

    No full text
    Recently, we reported that human neuroglobin (NGB) is a new player in the signal transduction pathways that lead to 17Ã\u9f-estradiol (E2)-induced neuron survival. Indeed, E2 induces in neuron mitochondria the enhancement of NGB level, which in turn impairs the activation of a pro-apoptotic cascade. Nowadays, the existence of a similar pathway activated by E2 in non-neuronal cells is completely unknown. Here, the role of E2-induced NGB upregulation in tumor cells is reported. E2 induced the upregulation of NGB in a dose- and time-dependent manner in MCF-7, HepG2, SK-N-BE, and HeLa cells transfected with estrogen receptor a (ERa), whereas E2 was unable to modulate the NGB expression in the ERa-devoid HeLa cells. Both transcriptional and extranuclear ERa signals were required for the E2-dependent upregulation of NGB in MCF-7 and HepG2 cell lines. E2 stimulation modified NGB intracellular localization, inducing a significant reduction of NGB in the nucleus with a parallel increase of NGB in the mitochondria in both HepG2 and MCF-7 cells. Remarkably, E2 pretreatment did not counteract the H2O2-induced caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, as well as Bcl-2 overexpression in MCF-7 and HepG2 cells in which NGB was stably silenced by using shRNA lentiviral particles, highlighting the pivotal role of NGB in E2-induced antiapoptotic pathways in cancer cells. Present results indicate that the E2-induced NGB upregulation in cancer cells could represent a defense mechanism of E2-related cancers rendering them insensitive to oxidative stress. As a whole, these data open new avenues to develop therapeutic strategies against E2-related cancers

    Neuroglobin, a pro-survival player in estrogen receptor α-positive cancer cells.

    No full text
    Recently, we reported that human neuroglobin (NGB) is a new player in the signal transduction pathways that lead to 17Ã\u9f-estradiol (E2)-induced neuron survival. Indeed, E2 induces in neuron mitochondria the enhancement of NGB level, which in turn impairs the activation of a pro-apoptotic cascade. Nowadays, the existence of a similar pathway activated by E2 in non-neuronal cells is completely unknown. Here, the role of E2-induced NGB upregulation in tumor cells is reported. E2 induced the upregulation of NGB in a dose- and time-dependent manner in MCF-7, HepG2, SK-N-BE, and HeLa cells transfected with estrogen receptor a (ERa), whereas E2 was unable to modulate the NGB expression in the ERa-devoid HeLa cells. Both transcriptional and extranuclear ERa signals were required for the E2-dependent upregulation of NGB in MCF-7 and HepG2 cell lines. E2 stimulation modified NGB intracellular localization, inducing a significant reduction of NGB in the nucleus with a parallel increase of NGB in the mitochondria in both HepG2 and MCF-7 cells. Remarkably, E2 pretreatment did not counteract the H2O2-induced caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, as well as Bcl-2 overexpression in MCF-7 and HepG2 cells in which NGB was stably silenced by using shRNA lentiviral particles, highlighting the pivotal role of NGB in E2-induced antiapoptotic pathways in cancer cells. Present results indicate that the E2-induced NGB upregulation in cancer cells could represent a defense mechanism of E2-related cancers rendering them insensitive to oxidative stress. As a whole, these data open new avenues to develop therapeutic strategies against E2-related cancers

    Improvement of a real-time lamp protocol for the detection of Xylella fastidiosa in Philaenus spumarius and Neophilaenus campestris

    Get PDF
    Trabajo presentado en la 2nd European conference on Xylella fastidiosa (how research can support solutions), celebrada en Ajaccio el 29 y 30 de octubre de 2019.The epidemic spread of Xylella fastidiosa (Xf) in southern Italy, with very important economic repercussions for the olive tree industry, makes it advisable to use methodologies for early monitoring of potential tree infection before symptom development in host plants, such as the use of spy insects. This approach is based on the use of molecular tests to detect the presence of Xf, among which the real-time LAMP. In this work, a commercial kit (Enbiotech, Italy) based on this technique, was assayed for detection of Xf in Philaenus spumarius and Neophilaenus campestris specimens in different demarcated areas in Europe. Spiked samples were tested using the entire insect and bulk insect heads artificially inoculated with serial dilutions (from 106 to 100 CFU) of a strain of X. fastidiosa subsp. pauca ST53, isolated from an olive tree in Apulia. In order to exclude the loss of sensitivity due to the presence of inhibitors in the reaction, spiked samples were also tested using the insect heads macerated in the extraction buffer provided by the kit. The lowest bacterial dilution was always detected. Approximately 525 individuals of P. spumarius were sampled in late summer in an infected olive grove in Lecce (Italy) and tested by this assay. The total incidence of infection ranged from 13% to 16%, using single entire insects or single heads, respectively. This incidence was confirmed with bulk heads to assess the diagnostic sensitivity of the real-time LAMP test; with a progressive increase in bacterial detection observed by analysing a higher number of heads. Finally, heads of approximately 280 P. spumarius and N. campestris, collected in an infected almond grove in Alicante (Spain), are being analysed to determine the infection prevalence using the commercial kit and the real-time-PCR of Harper et al. (2010, erratum 2013), to compare the sensitivity of both techniques

    Xenoestrogens Alter Estrogen Receptor (ER) α Intracellular Levels.

    No full text
    17β-estradiol (E2)-dependent estrogen receptor (ER) α intracellular concentration is a well recognized critical step in the pleiotropic effects elicited by E2 in several target tissues. Beside E2, a class of synthetic and plant-derived chemicals collectively named endocrine disruptors (EDs) or xenoestrogens bind to and modify both nuclear and extra-nuclear ERα activities. However, at the present no information is available on the ability of EDs to hamper ERα intracellular concentration. Here, the effects of bisphenol A (BPA) and naringenin (Nar), prototypes of synthetic and plant-derived ERα ligands, have been evaluated on ERα levels in MCF-7 cells. Both EDs mimic E2 in triggering ERα Ser118 phosphorylation and gene transcription. However, only E2 or BPA induce an increase of cell proliferation; whereas 24 hrs after Nar stimulation a dose-dependent decrease in cell number is reported. E2 or BPA treatment reduces ERα protein and mRNA levels after 24 hrs. Contrarily, Nar stimulation does not alter ERα content but reduces ERα mRNA levels like other ligands. Co-stimulation experiments indicate that 48 hrs of Nar treatment prevents the E2-induced ERα degradation and hijacks the physiological ability of E2:ERα complex to regulate gene transcription. Mechanistically, Nar induces ERα protein accumulation by preventing proteasomal receptor degradation via persistent activation of p38/MAPK pathway. As a whole these data demonstrate that ERα intracellular concentration is an important target through which EDs hamper the hormonal milieu of E2 target cells driving cells to different outcomes or mimicking E2 even in the absence of the hormone. © 2014 La Rosa et al
    corecore