40 research outputs found

    The contribution of insects to global forest deadwood decomposition

    Get PDF
    The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks. The decomposition of deadwood is largely governed by climate with decomposer groups—such as microorganisms and insects—contributing to variations in the decomposition rates. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect—including the direct consumption by insects and indirect effects through interactions with microorganisms—insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and −0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle

    Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Get PDF
    Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain

    Effects of temperature stress and aquarium conditions on the red macroalga Delisea pulchra and its associated microbial community

    Get PDF
    In recent years there has been an increase in the rate and severity of diseases affecting habitat-forming marine organisms, such as corals, sponges and macroalgae. Delisea pulchra is a temperate red macroalga that suffers from a bleaching disease that is more frequent during summer, when seawater temperatures are elevated and the alga’s chemical defense is weakened. A bacterial cause for the disease is implied by previous studies showing that some isolated strains can cause bleaching in vitro and that host-associated microbial communities are distinct between diseased and healthy individuals. However, nothing is known about the successional events in the microbial community that occur during the development of the disease. To study this aspect in the future, we aimed here to develop an experimental setup to study the bleaching disease in a controllable aquarium environment. Application of a temperature stress (up to 27° C) did not cause a clear and consistent pattern of bleaching, suggesting that temperature alone might not be the only or main factor to cause the disease. The results also showed that the aquarium conditions alone seem to be sufficient to produce bleaching symptoms. Microbial community analysis based on 16S rRNA gene fingerprinting and sequencing showed significant changes after 15 days in the aquarium, indicating that the native microbial associates of D. pulchra are not stably maintained. Microbial taxa that were enriched in the aquarium-held D. pulchra thalli, however did not match on a taxonomic level those that have been found to be enriched in natural bleaching events. Together our observations indicate that environmental factors, other than the ones investigated here, might drive the bleaching disease in D. pulchra and that the aquarium conditions have substantial impact on the algal-associated microbiome

    Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga Ulva spp.

    No full text
    14 pages, 5 figures, 1 tableBacterial communities play an essential role for the function of marine macroalgae. Recent work has shown that bacterial communities associated with individual macroalgae possess on a local scale a functional core that is likely derived from diverse members of functional guilds. It is not known whether such functional cores also exist across large spatial scales or between closely related host species. To address this, we studied here the bacterial communities on three species of the green macroalgal genus Ulva from different geographic locations. While the taxonomic composition was too variable to describe a community core, we identified genes that were enriched across all Ulva samples as compared to the communities of the surrounding seawater. Of these core functions, 70% were consistently found and independent of the Ulva species and biogeography, while the remaining functions (~30%) are possibly involved in local or host-specific adaptations. For each host individual, the core functions are provided by bacteria with distinct phylogenetic origin and these bacteria could constitute a global guild of Ulva-associated bacteria. Together, our results demonstrate the presence of a stable core set of functional genes in the bacterial communities associated with closely related host species and across large biogeographies.Australian Research Council; SpanishNational Plan for Scientific and Technical Research and Innovation, Grant/ Award Number: AGL2013-41868-R; Mexican National Council for Science and Technology (CONACYT), Grant/ Award Number: 214251; Ministry for Education of Spain, Grant/ Award Number: PR2011-0312Peer reviewe

    Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors

    No full text
    Eosinophils have been identified as a prognostic marker in immunotherapy of melanoma and suggested to contribute to anti-tumor host defense. However, the influence of immune checkpoint inhibitors (ICI) on the eosinophil population is poorly studied. Here, we applied routine laboratory tests, multicolor flow cytometry, RNA microarray analysis, and bio-plex assay to analyze circulating eosinophils and related serum inflammatory factors in 32 patients treated with pembrolizumab or the combination of nivolumab and ipilimumab. We demonstrated that clinical responses to ICI treatment were associated with an eosinophil accumulation in the peripheral blood. Moreover, immunotherapy led to the alteration of the eosinophil genetic and activation profile. Elevated serum concentrations of IL-16 during ICI treatment were found to be associated with increased frequencies of eosinophils in the peripheral blood. Using immunohistochemistry, we observed an enhanced eosinophil degranulation and a positive correlation between eosinophil and CD8+ T cell infiltration of tumor tissues from melanoma patients treated with ICI. Our findings highlight additional mechanisms of ICI effects and suggest the level of eosinophils as a novel predictive marker for melanoma patients who may benefit from this immunotherapy

    Integration of fisheries into marine spatial planning: Quo vadis?

    Get PDF
    The relationship between fisheries and marine spatial planning (MSP) is still widely unsettled. While several scientific studies highlight the strong relation between fisheries and MSP, as well as ways in which fisheries could be included in MSP, the actual integration of fisheries into MSP often fails. In this article, we review the state of the art and latest progress in research on various challenges in the integration of fisheries into MSP. The reviewed studies address a wide range of integration challenges, starting with techniques to analyse where fishermen actually fish, assessing the drivers for fishermen's behaviour, seasonal dynamics and long-term spatial changes of commercial fish species under various anthropogenic pressures along their successive life stages, the effects of spatial competition on fisheries and projections on those spaces that might become important fishing areas in the future, and finally, examining how fisheries could benefit from MSP. This paper gives an overview of the latest developments on concepts, tools, and methods. It becomes apparent that the spatial and temporal dynamics of fish and fisheries, as well as the definition of spatial preferences, remain major challenges, but that an integration of fisheries is already possible today
    corecore