30 research outputs found

    Pharmacological postconditioning against myocardial infarction with a slow-releasing hydrogen sulfide donor, GYY4137

    Get PDF
    Exogenous hydrogen sulfide (H2S) protects against myocardial ischemia/reperfusion injury but the mechanism of action is unclear. The present study investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial infarction given specifically at reperfusion and the signalling pathway involved. Thiobutabarbital-anesthetised rats were subjected to 30min of left coronary artery occlusion and 2h reperfusion. Infarct size was assessed by tetrazolium staining. In the first study, animals randomly received either no treatment or GYY4137 (26.6, 133 or 266μmolkg-1) by intravenous injection 10min before reperfusion. In a second series, involvement of PI3K and NO signalling were interrogated by concomitant administration of LY294002 or L-NAME respectively and the effects on the phosphorylation of Akt, eNOS, GSK-3β and ERK1/2 during early reperfusion were assessed by immunoblotting. GYY4137 266μmolkg-1 significantly limited infarct size by 47% compared to control hearts (P<0.01). In GYY4137-treated hearts, phosphorylation of Akt, eNOS and GSK-3β was increased 2.8, 2.2 and 2.2 fold respectively at early reperfusion. Co-administration of L-NAME and GYY4137 attenuated the cardioprotection afforded by GYY4137, associated with attenuated phosphorylation of eNOS. LY294002 totally abrogated the infarct-limiting effect of GYY4137 and inhibited Akt, eNOS and GSK-3β phosphorylation. These data are the first to demonstrate that GYY4137 protects the heart against lethal reperfusion injury through activation of PI3K/Akt signalling, with partial dependency on NO signalling and inhibition of GSK-3β during early reperfusion. H2S-based therapeutic approaches may have value as adjuncts to reperfusion in the treatment of acute myocardial infarction

    Ap39, a mitochondria-targeting hydrogen sulfide (H2 s) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling

    Get PDF
    Background and Purpose H2S protects myocardium against ischaemia-reperfusion injury. This protection may involve the cytosolic reperfusion injury salvage kinase (RISK) pathway, but direct effects on mitochondrial function are possible. Here, we investigated the potential cardioprotective effect of mitochondria-specific H2S donor, AP39, at reperfusion against ischaemia/reperfusion injury. Experimental Approach Anaesthetised rats underwent myocardial (30 min ischaemia/120 min reperfusion) with randomisation to receive interventions prior to reperfusion: vehicle, AP39 (0.01, 0.1, 1 µmol kg-1), or the control compounds AP219 or ADT-OH (1 µmol kg-1). LY294002, L-NAME or ODQ were used to interrogate the involvement of RISK pathway. Myocardial samples harvested 5 minutes after reperfusion were analysed for RISK protein phosphorylation and additional experiments were conducted on isolated cardiac mitochondria to examine the direct mitochondrial effects of AP39. Key Results AP39 exerted dose-dependent infarct size limitation. Inhibition of either PI3K/Akt, eNOS or sGC did not affect the infarct limitation of AP39. Western blot analysis confirmed that AP39 did not induce phosphorylation of Akt, eNOS, GSK-3β or ERK1/2. In isolated subsarcolemmal and interfibrillar mitochondria, AP39 significantly attenuated mitochondrial ROS generation without affecting respiratory complexes I or II. Further, AP39 inhibited mitochondrial permeability transition pore (PTP) opening and co-incubation of mitochondria with AP39 and cyclosporine A induced an additive inhibition of PTP. Conclusion and Implications AP39 protects against reperfusion injury independently of the cytosolic RISK pathway. Cardioprotection could be mediated by inhibiting PTP via cyclophilin D-independent mechanism. Thus, selective delivery of H2S to mitochondria may be therapeutically applicable for harnessing the cardioprotective utility of H2S. This article is protected by copyright. All rights reserved

    Hydrogen Sulfide Abrogates Hemoglobin-Lipid Interaction in Atherosclerotic Lesion

    Get PDF
    This is the final version of the article. Available from Hindawi Publishing Corporation via the DOI in this record.The infiltration of red blood cells into atheromatous plaques is implicated in atherogenesis. Inside the lesion, hemoglobin (Hb) is oxidized to ferri-and ferrylHb which exhibit prooxidant and proinflammatory activities. Cystathione gamma-lyase-(CSE-) derived H 2 S has been suggested to possess various antiatherogenic actions. Expression of CSE was upregulated predominantly in macrophages, foam cells, and myofibroblasts of human atherosclerotic lesions derived from carotid artery specimens of patients. A similar pattern was observed in aortic lesions of apolipoprotein E-deficient mice on high-fat diet. We identified several triggers for inducing CSE expression in macrophages and vascular smooth muscle cells including heme, ferrylHb, plaque lipids, oxidized low-density lipoprotein, tumor necrosis factor-α, and interleukin-1β. In the interplay between hemoglobin and atheroma lipids, H 2 S significantly mitigated oxidation of Hb preventing the formation of ferrylHb derivatives, therefore providing a novel function as a heme-redox-intermediate-scavenging antioxidant. By inhibiting Hb-lipid interactions, sulfide lowered oxidized Hb-mediated induction of adhesion molecules in endothelium and disruption of endothelial integrity. Exogenous H 2 S inhibited heme and Hb-mediated lipid oxidation of human atheroma-derived lipid and human complicated lesion. Our study suggests that the CSE/H 2 S system represents an atheroprotective pathway for removing or limiting the formation of oxidized Hb and lipid derivatives in the atherosclerotic plaque.The research group is supported by the Hungarian Academy of Sciences (11003). This work was supported by Hungarian Government Grants (OTKA) K112333 (József Balla), K109843 (Péter Nagy), and K116024 (Viktória Jeney) and Marie Curie International Reintegration Grant PIRG08-GA-2010-277006 (Péter Nagy). Péter Nagy is a János Bolyai Research Scholar of the Hungarian Academy of Sciences. Viktória Jeney was supported by Zoltán Magyary Fellowship (TÁMOP 4.2.4.A/2-11/1-2012-0001). László Potor was supported by János Apáczai-Csere Fellowship (TÁMOP 4.2.4.A/2-11/1-2012-0001). The project was cofinanced by the European Union and the European Social Fund (ESF) GINOP-2.3.2-15-2016-00043 IRONHEARTH and EFOP-3.6.2-16-2017-00006 LIVE LONGER

    Sulfur amino acid supplementation displays therapeutic potential in a C. elegans model of Duchenne muscular dystrophy

    Get PDF
    Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms

    Mitochondrial sulfide promotes life span and health span through distinct mechanisms in developing versus adult treated Caenorhabditis elegans

    Get PDF
    Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH S) administered across the adult life course are unknown. Using a aging model, we compared untargeted H S (NaGYY4137, 100 µM and 100 nM) and mtH S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH S donor-mediated health span. Developmentally administered mtH S (100 nM) improved life/health span vs. equivalent untargeted H S doses. mtH S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H S metabolism enzymes and FoxO/ prevented the positive health span effects of mtH S, whereas DCAF11/ - Nrf2/ oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH S treatments. Adult mtH S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the / transcription factor circuit. H S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH S doses required for health span extension, combined with efficacy in adult animals, suggest mtH S is a potential healthy aging therapeutic

    The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro.

    Get PDF
    The development of diabetic vascular complications is initiated, at least in part, by mitochondrial reactive oxygen species (ROS) production in endothelial cells. Hyperglycemia induces superoxide production in the mitochondria and initiates changes in the mitochondrial membrane potential that leads to mitochondrial dysfunction. Hydrogen sulfide (H2S) supplementation has been shown to reduce the mitochondrial oxidant production and shows efficacy against diabetic vascular damage in vivo. However, the half-life of H2S is very short and it is not specific for the mitochondria. We have therefore evaluated two novel mitochondria-targeted anethole dithiolethione and hydroxythiobenzamide H2S donors (AP39 and AP123 respectively) at preventing hyperglycemia-induced oxidative stress and metabolic changes in microvascular endothelial cells in vitro. Hyperglycemia (HG) induced significant increase in the activity of the citric acid cycle and led to elevated mitochondrial membrane potential. Mitochondrial oxidant production was increased and the mitochondrial electron transport decreased in hyperglycemic cells. AP39 and AP123 (30-300nM) decreased HG-induced hyperpolarisation of the mitochondrial membrane and inhibited the mitochondrial oxidant production. Both H2S donors (30-300nM) increased the electron transport at respiratory complex III and improved the cellular metabolism. Targeting H2S to mitochondria retained the cytoprotective effect of H2S against glucose-induced damage in endothelial cells suggesting that the molecular target of H2S action is within the mitochondria. Mitochondrial targeting of H2S also induced >1000-fold increase in the potency of H2S against hyperglycemia-induced injury. The high potency and long-lasting effect elicited by these H2S donors strongly suggests that these compounds could be useful against diabetic vascular complications

    Predicting needlestick and sharps injuries in nursing students: Development of the SNNIP scale

    Get PDF
    © 2020 The Authors. Nursing Open published by John Wiley & Sons Ltd. Aim: To develop an instrument to investigate knowledge and predictive factors of needlestick and sharps injuries (NSIs) in nursing students during clinical placements. Design: Instrument development and cross-sectional study for psychometric testing. Methods: A self-administered instrument including demographic data, injury epidemiology and predictive factors of NSIs was developed between October 2018–January 2019. Content validity was assessed by a panel of experts. The instrument's factor structure and discriminant validity were explored using principal components analysis. The STROBE guidelines were followed. Results: Evidence of content validity was found (S-CVI 0.75; I-CVI 0.50–1.00). A three-factor structure was shown by exploratory factor analysis. Of the 238 participants, 39% had been injured at least once, of which 67.3% in the second year. Higher perceptions of “personal exposure” (4.06, SD 3.78) were reported by third-year students. Higher scores for “perceived benefits” of preventive behaviours (13.6, SD 1.46) were reported by second-year students

    Predicting needlestick and sharps injuries in nursing students: Development of the SNNIP scale

    Get PDF
    corecore