6 research outputs found

    Helping decision making for reliable and cost‐effective 2b‐RAD sequencing and genotyping analyses in non‐model species

    Full text link
    High-throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b-RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b-RAD protocols on non-model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b-RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade-off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≄20 reads to acquire good genotyping results. Finally, we demonstrated that selective-base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b-RAD protocols on non-model organisms with different genome sizes, helping decision-making for a reliable and cost-effective genotyping

    Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species

    No full text
    High-throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b-RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b-RAD protocols on nonmodel organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b-RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade-off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≄ 20 reads to acquire good genotyping results. Finally, we demonstrated that selective-base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Finally, we provide a set of guidelines to improve 2b-RAD protocols on non-model organisms with different genome sizes, helping decision-making for a reliable and cost-effective genotyping.Peer reviewe

    Deep magma storage during the 2021 La Palma eruption

    Full text link
    The 2021 La Palma eruption provided an unpreceded opportunity to test the relationship between earthquake hypocenters and the location of magma reservoirs. We performed density measurements on CO2-rich fluid inclusions (FIs) hosted in olivine crystals that are highly sensitive to pressure via calibrated Raman spectroscopy. This technique can revolutionize our knowledge of magma storage and transport during an ongoing eruption, given that it can produce precise magma storage depth constraints in near real time with minimal sample preparation. Our FIs have CO2 recorded densities from 0.73 to 0.98 g/cm3, translating into depths of 15 to 27 km, which falls within the reported deep seismic zone recording the main melt storage reservoir
    corecore