11 research outputs found

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    Loss of 5hmC identifies a new type of aberrant DNA hypermethylation in glioma

    Get PDF
    Aberrant DNA hypermethylation is a hallmark of cancer although the underlying molecular mechanisms are still poorly understood. To study the possible role of 5-hydroxymethylcytosine (5hmC) in this process we analyzed the global and locus-specific genome-wide levels of 5hmC and 5-methylcytosine (5mC) in human primary samples from 12 non-tumoral brains and 53 gliomas. We found that the levels of 5hmC identified in non-tumoral samples were significantly reduced in gliomas. Strikingly, hypo-hydroxymethylation at 4627 (9.3%) CpG sites was associated with aberrant DNA hypermethylation and was strongly enriched in CpG island shores. The DNA regions containing these CpG sites were enriched in H3K4me2 and presented a different genuine chromatin signature to that characteristic of the genes classically aberrantly hypermethylated in cancer. As this 5mC gain is inversely correlated with loss of 5hmC and has not been identified with classical sodium bisulfite-based technologies, we conclude that our data identifies a novel 5hmC-dependent type of aberrant DNA hypermethylation in glioma.This work has been financially supported by: the Plan Nacional de I+D+I 2013–2016/FEDER (PI15/00892 to M.F.F. and A.F.F.; RTC-2015-3393-1 to A.F.F.); the ISCIII-Subdirección General de Evaluación y Fomento de la Investigación, and the Plan Nacional de I+D+I 2008–2011/FEDER (CP11/00131 to A.F.F.); IUOPA (to G.F.B. and M.S); the Fundación Científica de la AECC (to R.G.U.); the Fundación Ramón Areces (to M.F.F); FICYT (to E.G.T., M.G.G. and A.C.); and the Asturias Regional Government (GRUPIN14-052 to M.F.F.). Work in P.M. laboratory is supported by the European Research Council (CoG-2014-646903), the Spanish Ministry of Economy-Competitiveness (SAF-SAF2013-43065), the Obra Social La Caixa-Fundaciò Josep Carreras, and the Generalitat de Catalunya. P.M. is an investigator in the Spanish Cell Therapy cooperative network (TERCEL). The IUOPA is supported by the Obra Social Cajastur-Liberbank, Spain.Peer reviewe

    Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment

    Get PDF
    Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death

    Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility

    Full text link
    STUDY QUESTION Are there DNA methylation alterations in sperm that could explain the reduced biological fertility of male partners from couples with unexplained infertility? SUMMARY ANSWER DNA methylation patterns, not only at specific loci but also at Alu Yb8 repetitive sequences, are altered in infertile individuals compared with fertile controls. STUDY DESIGN, SIZE, DURATION Case and control prospective study. This study compares 46 sperm samples obtained from 17 normospermic fertile men and 29 normospermic infertile patients. MAIN RESULTS AND THE ROLE OF CHANCE In this study we conduct, for the first time, a genome-wide study to identify alterations of sperm DNA methylation in individuals with unexplained infertility that may account for the differences in their biological fertility compared with fertile individuals. We have identified 2752 CpGs showing aberrant DNA methylation patterns, and more importantly, these differentially methylated CpGs were significantly associated with CpG sites which are specifically methylated in sperm when compared with somatic cells. We also found statistically significant (P < 0.001) associations between DNA hypomethylation and regions corresponding to those which, in somatic cells, are enriched in the repressive histone mark H3K9me3, and between DNA hypermethylation and regions enriched in H3K4me1 and CTCF, suggesting that the relationship between chromatin context and aberrant DNA methylation of sperm in infertile men could be locus-dependent. Finally, we also show that DNA methylation patterns, not only at specific loci but also at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4), were lower in sperm than in somatic cells. Interestingly, sperm samples at Alu Yb8 repetitive sequences of infertile patients showed significantly lower DNA methylation levels than controls

    Combination lenalidomide-rituximab immunotherapy activates anti-tumour immunity and induces tumour cell death by complementary mechanisms of action in follicular lymphoma

    Get PDF
    International audienceChemotherapy plus rituximab has been the mainstay of treatment for follicular lymphoma (FL) for two decades but is associated with immunosuppression and relapse. In phase 2 studies, lenalidomide combined with rituximab (R 2 ) has shown clinical synergy in front-line and relapsed/refractory FL. Here, we show that lenalidomide reactivated dysfunctional T and Natural Killer (NK) cells ex vivo from FL patients by enhancing proliferative capacity and T-helper cell type 1 (Th1) cytokine release. In combination with rituximab, lenalidomide improved antibody-dependent cellular cytotoxicity in sensitive and chemo-resistant FL cells, via a cereblon-dependent mechanism. While single-agent lenalidomide and rituximab increased formation of lytic NK cell immunological synapses with primary FL tumour cells, the combination was superior and correlated with enhanced cytotoxicity. Immunophenotyping of FL patient samples from a phase 3 trial revealed that R 2 treatment increased circulating T- and NK-cell counts, while R-chemotherapy was associated with reduced cell numbers. Finally, using an in vitro model of myeloid differentiation, we demonstrated that lenalidomide caused a reversible arrest in neutrophil maturation that was distinct from a cytotoxic chemotherapeutic agent, which may help explain the lower rates of neutropenia observed with R 2 versus R-chemotherapy. Taken together, we believe these data support a paradigm shift in the treatment of FL – moving from combination immunochemotherapy to chemotherapy-free immunotherapy. © 2019 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley and Sons Ltd

    Epigenetic dysregulation of TET2 in human glioblastoma

    No full text
    Ten-eleven translocation (TET) enzymes are frequently deregulated in cancer, but the underlying molecular mechanisms are still poorly understood. Here we report that TET2 shows frequent epigenetic alterations in human glioblastoma including DNA hypermethylation and hypo-hydroxymethylation, as well as loss of histone acetylation. Ectopic overexpression of TET2 regulated neural differentiation in glioblastoma cell lines and impaired tumor growth. Our results suggest that epigenetic dysregulation of TET2 plays a role in human glioblastoma.This work has been financially supported by: the Plan Nacional de I+D+I 2013-2016/FEDER (PI15/00892 to M.F.F. and A.F.F.); the ISCIII-Subdirección General de Evaluación y Fomento de la Investigación, and the Plan Nacional de I+D+I 2008-2011/FEDER (CP11/00131 to A.F.F.); IUOPA (to G.F.B., M.I.S. and C.M.); the Fundación Científica de la AECC (to R.G.U.); FICYT (to M.G.G. and A.C.); and the Asturias Regional Government (GRUPIN14-052 to M.F.F.). A.F.F. is also supported from Ministerio de Economía y Competitividad and the European Regional Development Fund (FEDER), Programa Retos de la Sociedad 2015 (RTC-2015-3393-1). The IUOPA is supported by the Obra Social Cajastur-Liberbank, Spain.Peer Reviewe

    Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis

    No full text
    Loss of 5‐hydroxymethylcytosine (5hmC) has been associated with mutations of the ten–eleven translocation (TET) enzymes in several types of cancer. However, tumors with wild‐type TET genes can also display low 5hmC levels, suggesting that other mechanisms involved in gene regulation might be implicated in the decline of this epigenetic mark. Here we show that DNA hypermethylation and loss of DNA hydroxymethylation, as well as a marked reduction of activating histone marks in the TET3 gene, impair TET3 expression and lead to a genome‐wide reduction in 5hmC levels in glioma samples and cancer cell lines. Epigenetic drugs increased expression of TET3 in glioblastoma cells and ectopic overexpression of TET3 impaired in vitro cell growth and markedly reduced tumor formation in immunodeficient mice models. TET3 overexpression partially restored the genome‐wide patterns of 5hmC characteristic of control brain samples in glioblastoma cell lines, while elevated TET3 mRNA levels were correlated with better prognosis in glioma samples. Our results suggest that epigenetic repression of TET3 might promote glioblastoma tumorigenesis through the genome‐wide alteration of 5hmC.This work has been financially supported by the Plan Nacional de I+D+I 2013-2016/FEDER (PI15/00892 to M.F.F. and A.F.F.), the ISCIII-Subdirección General de Evaluación y Fomento de la Investigación (Miguel Servet contract CP11/00131 to A.F.F.); the Asturias Regional Government (GRUPIN14-052 to M.F.F.); FICYT (A.C. and M.G.); the Ministry of Economy and Competitiveness of Spain (J.R.T., Juan de la Cierva fellowship FJCI-2015-26965, V.L., Juan de la Cierva fellowship IJCI-2015-23316); Fundación Científica de la AECC (to R.G.U.); FINBA-ISPA (R.F.P.); IUOPA (G.F.B. and C.M.) and Fundación Ramón Areces (M.F.F.). A.F.F. is also financially supported by the Ministry of Economy and Competitiveness of Spain, the European Regional Development Fund (FEDER) and the Programa Retos de la Sociedad (RTC-2015-3393-1). The IUOPA is supported by the Obra Social Cajastur-Liberbank, Spain.Peer reviewe

    Loss of 5hmC identifies a new type of aberrant DNA hypermethylation in glioma.

    No full text
    Aberrant DNA hypermethylation is a hallmark of cancer although the underlying molecular mechanisms are still poorly understood. To study the possible role of 5-hydroxymethylcytosine (5hmC) in this process we analyzed the global and locus-specific genome-wide levels of 5hmC and 5-methylcytosine (5mC) in human primary samples from 12 non-tumoral brains and 53 gliomas. We found that the levels of 5hmC identified in non-tumoral samples were significantly reduced in gliomas. Strikingly, hypo-hydroxymethylation at 4627 (9.3%) CpG sites was associated with aberrant DNA hypermethylation and was strongly enriched in CpG island shores. The DNA regions containing these CpG sites were enriched in H3K4me2 and presented a different genuine chromatin signature to that characteristic of the genes classically aberrantly hypermethylated in cancer. As this 5mC gain is inversely correlated with loss of 5hmC and has not been identified with classical sodium bisulfite-based technologies, we conclude that our data identifies a novel 5hmC-dependent type of aberrant DNA hypermethylation in glioma
    corecore