44 research outputs found

    Genetic identification of alien larch taxa : the case of the Tatra National Park

    Get PDF
    The natural consequences of introducing alien species can be significant. This is particularly a concern where the taxa have an invasive nature of spreading or in those that freely crossbreed with native species. The hybridization process may lead to impoverishment or even loss of the native gene pool. This is especially dangerous in unique areas that stand out due to their special natural characteristics, such as the Tatra National Park. The determination of the scale of occurrence of alien larch species in the national park and the evaluation of the genetic diversity of the native population is crucial for the conservation of genetic resources and strictly adheres to the latest conservation genetics trends. We evaluated the possibility of effective use of molecular markers for taxonomic identification of the native European larch (Larix decidua Mill.), as well as the alien Japanese larch (Larix kaempferi [Lambert] Carriere) and the hybrid form (Larix × eurolepis Henry). Microsatellite markers were used to analyse the genetic diversity of individuals identified as European larch from natural refuges and artificial plantings. Of the 148 trees analysed, 105 were identified as the European larch, 38 as Japanese larch, and five as hybrids. The analysis of the molecular variability of two European larch groups of indigenous and artificial origin showed comparable level of diversity. This study confirmed the effectiveness of the use of selected molecular markers in identification of larch species, which is difficult based on morphological traits. The results indicate the possibility for the effective use of genetic tools in the creation of protection programmes, especially for naturally valuable sites, based on genetic taxonomic identification and richness verification of protected gene pools

    A modified method for molecular identification of Baylisascaris transfuga in European brown bears (Ursus arctos)

    Get PDF
    Baylisascaris transfuga is a roundworm that has been reported worldwide in most bear species. In mammals and possibly humans, the larvae of B. transfuga can migrate in the tissues of aberrant hosts with larva migrans syndrome. The current study was performed to identify B. transfuga in faecal samples from free-ranging brown bears in the Tatra Mountains National Park in southern Poland. A commercial kit was used to extract genomic DNA directly from faecal samples. Additionally, a Chelex resin-based technique was successfully implemented to prepare a PCR template from eggs retrieved by flotation. Based on the flotation results of 32 collected faecal samples, the prevalence of B. transfuga was 15.6%. The parasite was confirmed in samples found to be positive during the initial flotation by a molecular assay using DNA isolated directly from faeces. The retrieved eggs were confirmed as B. transfuga after their DNA was extracted using the Chelex protocol. Based on PCR amplification and sequencing of a 413-bp segment of cytochrome c oxidase 1 (COI), the obtained sequence was 100% identical to the COI segment of B. transfuga after a BLAST comparison to the GenBankℱ database. The current study includes the first molecular confirmation of B. transfuga in brown bears in the western part of the Carpathians. We show that direct extraction of parasite DNA from bear faeces is efficient for molecular assays. As an alternative, we present the effectiveness of a Chelex-based technique for fast and convenient DNA isolation from the difficult-to-disrupt eggs of B. transfuga for PCR. Molecular tests of parasite DNA extracted directly from faecal material have limits of detection related to the amount of eggs in the samples. Thus, using classical flotation to obtain eggs for PCR may increase the credibility of the results, particularly in cases with a low number of excreted eggs. The Chelex resin protocol has potential for application in studies of intestinal parasites in wildlife for which conventional flotation is routinely used for microscopy

    A modified method for molecular identification of Baylisascaris transfuga in European brown bears (Ursus arctos)

    Get PDF
    Baylisascaris transfuga is a roundworm that has been reported worldwide in most bear species. In mammals and possibly humans, the larvae of B. transfuga can migrate in the tissues of aberrant hosts with larva migrans syndrome. The current study was performed to identify B. transfuga in faecal samples from free-ranging brown bears in the Tatra Mountains National Park in southern Poland. A commercial kit was used to extract genomic DNA directly from faecal samples. Additionally, a Chelex resin-based technique was successfully implemented to prepare a PCR template from eggs retrieved by flotation. Based on the flotation results of 32 collected faecal samples, the prevalence of B. transfuga was 15.6%. The parasite was confirmed in samples found to be positive during the initial flotation by a molecular assay using DNA isolated directly from faeces. The retrieved eggs were confirmed as B. transfuga after their DNA was extracted using the Chelex protocol. Based on PCR amplification and sequencing of a 413-bp segment of cytochrome c oxidase 1 (COI), the obtained sequence was 100% identical to the COI segment of B. transfuga after a BLAST comparison to the GenBankℱ database. The current study includes the first molecular confirmation of B. transfuga in brown bears in the western part of the Carpathians. We show that direct extraction of parasite DNA from bear faeces is efficient for molecular assays. As an alternative, we present the effectiveness of a Chelex-based technique for fast and convenient DNA isolation from the difficult-to-disrupt eggs of B. transfuga for PCR. Molecular tests of parasite DNA extracted directly from faecal material have limits of detection related to the amount of eggs in the samples. Thus, using classical flotation to obtain eggs for PCR may increase the credibility of the results, particularly in cases with a low number of excreted eggs. The Chelex resin protocol has potential for application in studies of intestinal parasites in wildlife for which conventional flotation is routinely used for microscopy

    Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians

    Get PDF
    Context. Connectivity assessments typically rely on resistance surfaces derived from habitat models, assuming that higher-quality habitat facilitates movement. This assumption remains largely untested though, and it is unlikely that the same environmental factors determine both animal movements and habitat selection, potentially biasing connectivity assessments. Objectives. We evaluated how much connectivity assessments differ when based on resistance surfaces from habitat versus movement models. In addition, we tested how sensitive connectivity assessments are with respect to the parameterization of the movement models. Methods. We parameterized maximum entropy models to predict habitat suitability, and step selection functions to derive movement models for brown bear (Ursus arctos) in the northeastern Carpathians. We compared spatial patterns and distributions of resistance values derived from those models, and locations and characteristics of potential movement corridors. Results. Brown bears preferred areas with high forest cover, close to forest edges, high topographic complexity, and with low human pressure in both habitat and movement models. However, resistance surfaces derived from the habitat models based on predictors measured at broad and medium scales tended to underestimate connectivity, as they predicted substantially higher resistance values for most of the study area, including corridors. Conclusions. Our findings highlighted that connectivity assessments should be based on movement information if available, rather than generic habitat models. However, the parameterization of movement models is important, because the type of movement events considered, and the sampling method of environmental covariates can greatly affect connectivity assessments, and hence the predicted corridors

    Metal(loid) exposure assessment and biomarker responses in captive and free-ranging European brown bear (Ursus arctos)

    Get PDF
    We investigated the level of five non-essential metal(loid)s (As, Cd, Hg, Tl, Pb) and nine essential metals (Mg, Ca, Mn, Fe, Co, Cu, Zn, Se, Mo) in hair and blood components of captive and free-ranging European brown bear populations in Croatia and Poland. Metal(loid) associations with biomarkers of oxidative stress (superoxide dismutase, SOD ; glutathione- peroxidase, GSH-Px ; malondialdehyde, MDA) and metal exposure (metallothionein, MT) were estimated in this top predatory mammal. Lead was the most abundant non-essential metal(loid) in both blood and hair, with 4 of 35 individuals having blood levels over 100 ”g/L. A positive association was found between Pb level and SOD activity in blood. Free-ranging bears had higher blood SOD activity, Mn, Zn and Cd levels, hair Co, Cd, Tl and Pb compared to captive individuals, while the opposite was true for Mg and hair Ca thereby reflecting habitat and diet differences. With increasing age, animals showed lower levels of SOD activity and certain essential metals. Females had higher SOD activity and blood levels of some essential metals than males. Hair showed a higher Fe and Co level when sampled during the growth phase and was not predictive of non- essential metal(loid) blood levels. The established metal(loid) baseline values will enable future risk assessment in both captive and wild European brown bear populations

    Large carnivore expansion in Europe is associated with human population density and land cover changes

    Get PDF
    Aim: The recent recovery of large carnivores in Europe has been explained as resulting from a decrease in human persecution driven by widespread rural land abandonment, paralleled by forest cover increase and the consequent increase in availability of shelter and prey. We investigated whether land cover and human population density changes are related to the relative probability of occurrence of three European large carnivores: the grey wolf (Canis lupus), the Eurasian lynx (Lynx lynx) and the brown bear (Ursus arctos).Location: Europe, west of 64 degrees longitude.Methods: We fitted multi-temporal species distribution models using >50,000 occurrence points with time series of land cover, landscape configuration, protected areas, hunting regulations and human population density covering a 24-year period (1992-2015). Within the temporal window considered, we then predicted changes in habitat suitability for large carnivores throughout Europe.Results: Between 1992 and 2015, the habitat suitability for the three species increased in Eastern Europe, the Balkans, North-West Iberian Peninsula and Northern Scandinavia, but showed mixed trends in Western and Southern Europe. These trends were primarily associated with increases in forest cover and decreases in human population density, and, additionally, with decreases in the cover of mosaics of cropland and natural vegetation.Main conclusions: Recent land cover and human population changes appear to have altered the habitat suitability pattern for large carnivores in Europe, whereas protection level did not play a role. While projected changes largely match the observed recovery of large carnivore populations, we found mismatches with the recent expansion of wolves in Central and Southern Europe, where factors not included in our models may have played a dominant role. This suggests that large carnivores' co-existence with humans in European landscapes is not limited by habitat availability, but other factors such as favourable human tolerance and policy

    A comprehensive analysis of autocorrelation and bias in home range estimation

    Get PDF
    Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], SilvermanÂŽs rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animalÂŽs movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosFil: Tucker, Marlee A.. Senckenberg Gesellschaft FĂŒr Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados UnidosFil: Akre, Thomas S.. National Zoological Park; Estados UnidosFil: Alberts, Susan C.. University of Duke; Estados UnidosFil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; KeniaFil: Altmann, Jeanne. University of Princeton; Estados UnidosFil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; BrasilFil: Belant, Jerrold L.. State University of New York; Estados UnidosFil: Beyer, Dean. Universitat Phillips; AlemaniaFil: Blaum, Niels. Universitat Potsdam; AlemaniaFil: Böhning Gaese, Katrin. Senckenberg Gesellschaft FĂŒr Naturforschung; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Cullen Jr., Laury. Instituto de Pesquisas EcolĂłgicas; BrasilFil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; BrasilFil: Dekker, Jasja. Jasja Dekker Dierecologie; PaĂ­ses BajosFil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados UnidosFil: Farwig, Nina. Michigan State University; Estados UnidosFil: Fichtel, Claudia. German Primate Center; AlemaniaFil: Fischer, Christina. Universitat Technical Zu Munich; AlemaniaFil: Ford, Adam T.. University of British Columbia; CanadĂĄFil: Goheen, Jacob R.. University of Wyoming; Estados UnidosFil: Janssen, RenĂ©. Bionet Natuuronderzoek; PaĂ­ses BajosFil: Jeltsch, Florian. Universitat Potsdam; AlemaniaFil: Kauffman, Matthew. University Of Wyoming; Estados UnidosFil: Kappeler, Peter M.. German Primate Center; AlemaniaFil: Koch, FlĂĄvia. German Primate Center; AlemaniaFil: LaPoint, Scott. Max Planck Institute fĂŒr Ornithologie; Alemania. Columbia University; Estados UnidosFil: Markham, A. Catherine. Stony Brook University; Estados UnidosFil: Medici, Emilia Patricia. Instituto de Pesquisas EcolĂłgicas (IPE) ; BrasilFil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; BrasilFil: Nathan, Ran. The Hebrew University of Jerusalem; IsraelFil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados UnidosFil: Patterson, Bruce. Field Museum of National History; Estados UnidosFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Puerto IguazĂș | Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Puerto IguazĂș; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste; ArgentinaFil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel MamirauĂĄ; BrasilFil: Rösner, Sascha. Michigan State University; Estados UnidosFil: Schabo, Dana G.. Michigan State University; Estados UnidosFil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; BrasilFil: Spiegel, Orr. Universitat Tel Aviv; IsraelFil: Thompson, Peter. University of Maryland; Estados UnidosFil: Ullmann, Wiebke. Universitat Potsdam; AlemaniaFil: Ziឝba, Filip. Tatra National Park; PoloniaFil: Zwijacz Kozica, Tomasz. Tatra National Park; PoloniaFil: Fagan, William F.. University of Maryland; Estados UnidosFil: Mueller, Thomas. Senckenberg Gesellschaft FĂŒr Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unido

    Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data

    Get PDF
    Aim Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location Worldwide. Time period 1998-2021. Major taxa studied Forty-nine terrestrial mammal species. Methods Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission
    corecore