87 research outputs found

    Studies of the inner shelf and coastal sedimentation environment of the Beaufort Sea from ERTS-A

    Get PDF
    The author has identified the following significant results. Shearing periodically occurs between the westward moving pack ice (3 to 10 km/d) within the Pacific Gyre and the fast ice along the coast, forming major grounded shear and pressure ridges between the 10 to 40 m isobaths. Ridges occur in patterns conforming to known shoals. The zone of grounded ridges, called stamukhi zone, protects the inner shelf and coast from marine energy and pack ice forces. Relatively undeformed fast ice grows inshore of the stamukhi zone. The boundary is explained in terms of pack ice drift and major promontories and shoals. Intense ice gaging, highly disrupted sediments, and landward migration of shoals suggest that much of the available marine energy is expended on the sea floor within the stamukhi zone. Naleds (products of river icings) on the North Slope are more abundant east than west of the Colville River. Their location, growth, and decay were studied from LANDSAT imagery

    Direct Observation of Propagating Gigahertz Coherent Guided Acoustic Phonons in Free Standing Single Copper Nanowires

    Full text link
    We report on gigahertz acoustic phonon waveguiding in free-standing single copper nanowires studied by femtosecond transient reflectivity measurements. The results are discussed on the basis of the semianalytical resolution of the Pochhammer and Chree equation. The spreading of the generated Gaussian wave packet of two different modes is derived analytically and compared with the observed oscillations of the sample reflectivity. These experiments provide a unique way to independently obtain geometrical and material characterization. This direct observation of coherent guided acoustic phonons in a single nano-object is also the first step toward nanolateral size acoustic transducer and comprehensive studies of the thermal properties of nanowires

    Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment

    Get PDF
    Developing future projections of shoreline change requires a good understanding of the driving coastal processes. These processes result primarily from the combination of mean sea level, waves, storm surges and tides, which are affected by global and regional climate change, and whose uncertainty increases with time. This paper reviews the current state of the art of methods used to model climate change-induced coastal erosion focusing on how climate change-related drivers and the associated uncertainty are considered. We identify research gaps, describe and analyse the key components of a comprehensive framework to derive future estimates of shoreline change and make suggestions for good practice. Within the scope of the review, we find that although significant progress has been made over the last decade, most of the studies limit uncertainty sampling to considering ranges of variation of forcing variables and ensembles of emissions scenarios, and applications with high level of probabilistic development remain few. Further research is necessary to fully (a) incorporate projected time series of coastal drivers into the erosion models, including bias correction; (b) sufficiently sample the uncertainty associated with each step of the top-down approach, including the consideration of different emission scenarios, inter- and intra-model variability, and multiple runs of erosion models or model ensembles; and (c) reduce uncertainty in shoreline change estimates by developing better datasets and model parameterisations, and progressing in detection and attribution

    Pores with Longitudinal Irregularities Distinguish Objects by Shape

    Get PDF
    The resistive-pulse technique has been used to detect and size objects which pass through a single pore. The amplitude of the ion current change observed when a particle is in the pore is correlated with the particle volume. Up to date, however, the resistive-pulse approach has not been able to distinguish between objects of similar volume but different shapes. In this manuscript, we propose using pores with longitudinal irregularities as a sensitive tool capable of distinguishing spherical and rod-shaped particles with different lengths. The ion current modulations within resulting resistive pulses carry information on the length of passing objects. The performed experiments also indicate the rods rotate while translocating, and displace an effective volume that is larger than their geometrical volume, and which also depends on the pore diameter

    Sandy coastlines under threat of erosion

    Get PDF
    Sandy beaches occupy more than one-third of the global coastline(1) and have high socioeconomic value related to recreation, tourism and ecosystem services(2). Beaches are the interface between land and ocean, providing coastal protection from marine storms and cyclones(3). However the presence of sandy beaches cannot be taken for granted, as they are under constant change, driven by meteorological(4,5), geological(6) and anthropogenic factors(1,7). A substantial proportion of the world's sandy coastline is already eroding(1,7), a situation that could be exacerbated by climate change(8,9). Here, we show that ambient trends in shoreline dynamics, combined with coastal recession driven by sea level rise, could result in the near extinction of almost half of the world's sandy beaches by the end of the century. Moderate GHG emission mitigation could prevent 40% of shoreline retreat. Projected shoreline dynamics are dominated by sea level rise for the majority of sandy beaches, but in certain regions the erosive trend is counteracted by accretive ambient shoreline changes; for example, in the Amazon, East and Southeast Asia and the north tropical Pacific. A substantial proportion of the threatened sandy shorelines are in densely populated areas, underlining the need for the design and implementation of effective adaptive measures. Erosion is a major problem facing sandy beaches that will probably worsen with climate change and sea-level rise. Half the world's beaches, many of which are in densely populated areas, could disappear by the end of the century under current trends; mitigation could lessen retreat by 40%.info:eu-repo/semantics/publishedVersio

    Concerted Regulation of cGMP and cAMP Phosphodiesterases in Early Cardiac Hypertrophy Induced by Angiotensin II

    Get PDF
    Left ventricular hypertrophy leads to heart failure and represents a high risk leading to premature death. Cyclic nucleotides (cAMP and cGMP) play a major role in heart contractility and cyclic nucleotide phosphodiesterases (PDEs) are involved in different stages of advanced cardiac diseases. We have investigated their contributions in the very initial stages of left ventricular hypertrophy development. Wistar male rats were treated over two weeks by chronic infusion of angiotensin II using osmotic mini-pumps. Left cardiac ventricles were used as total homogenates for analysis. PDE1 to PDE5 specific activities and protein and mRNA expressions were explored

    Molecular dynamics simulations of non-equilibrium systems

    Get PDF
    Peer reviewe
    • …
    corecore