Abstract

We report on gigahertz acoustic phonon waveguiding in free-standing single copper nanowires studied by femtosecond transient reflectivity measurements. The results are discussed on the basis of the semianalytical resolution of the Pochhammer and Chree equation. The spreading of the generated Gaussian wave packet of two different modes is derived analytically and compared with the observed oscillations of the sample reflectivity. These experiments provide a unique way to independently obtain geometrical and material characterization. This direct observation of coherent guided acoustic phonons in a single nano-object is also the first step toward nanolateral size acoustic transducer and comprehensive studies of the thermal properties of nanowires

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/11/2016