13 research outputs found

    Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies

    Get PDF
    Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world’s population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have con- structed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, inter- connecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    Get PDF
    Introduction: Wheat (Triticum aestivum L.) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat yields and production affect the global economy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapting the crop to regionally specific biotic and abiotic stresses. Rationale: Breeding efforts are limited by insufficient knowledge and understanding of wheat biology and the molecular basis of central agronomic traits. To meet the demands of human population growth, there is an urgent need for wheat research and breeding to accelerate genetic gain as well as to increase and protect wheat yield and quality traits. In other plant and animal species, access to a fully annotated and ordered genome sequence, including regulatory sequences and genome-diversity information, has promoted the development of systematic and more time-efficient approaches for the selection and understanding of important traits. Wheat has lagged behind, primarily owing to the challenges of assembling a genome that is more than five times as large as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. To provide a foundation for improvement through molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out to deliver a high-quality annotated reference genome sequence of bread wheat. Results: An annotated reference sequence representing the hexaploid bread wheat genome in the form of 21 chromosome-like sequence assemblies has now been delivered, giving access to 107,891 high-confidence genes, including their genomic context of regulatory sequences. This assembly enabled the discovery of tissue- and developmental stage–related gene coexpression networks using a transcriptome atlas representing all stages of wheat development. The dynamics of change in complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. Aspects of the future value of the annotated assembly for molecular breeding and research were exemplarily illustrated by resolving the genetic basis of a quantitative trait locus conferring resistance to abiotic stress and insect damage as well as by serving as the basis for genome editing of the flowering-time trait. Conclusion: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding. Importantly, the bioinformatics capacity developed for model-organism genomes will facilitate a better understanding of the wheat genome as a result of the high-quality chromosome-based genome assembly. By necessity, breeders work with the genome at the whole chromosome level, as each new cross involves the modification of genome-wide gene networks that control the expression of complex traits such as yield. With the annotated and ordered reference genome sequence in place, researchers and breeders can now easily access sequence-level information to precisely define the necessary changes in the genomes for breeding programs. This will be realized through the implementation of new DNA marker platforms and targeted breeding technologies, including genome editing

    The Dark Matter of Large Cereal Genomes: Long Tandem Repeats

    No full text
    Reference genomes of important cereals, including barley, emmer wheat and bread wheat, were released recently. Their comparison with genome size estimates obtained by flow cytometry indicated that the assemblies represent not more than 88−98% of the complete genome. This work is aimed at identifying the missing parts in two cereal genomes and proposing techniques to make the assemblies more complete. We focused on tandemly organised repetitive sequences, known to be underrepresented in genome assemblies generated from short-read sequence data. Our study found arrays of three tandem repeats with unit sizes of 1242 to 2726 bp present in the bread wheat reference genome generated from short reads. However, this and another wheat genome assembly employing long PacBio reads failed in integrating correctly the 2726-bp repeat in the pseudomolecule context. This suggests that tandem repeats of this size, frequently incorporated in unassigned scaffolds, may contribute to shrinking of pseudomolecules without reducing size of the entire assembly. We demonstrate how this missing information may be added to the pseudomolecules with the aid of nanopore sequencing of individual BAC clones and optical mapping. Using the latter technique, we identified and localised a 470-kb long array of 45S ribosomal DNA absent from the reference genome of barley

    Prospects of telomere-to-telomere assembly in barley: analysis of sequence gaps in the MorexV3 reference genome

    No full text
    The first gapless, telomere-to-telomere (T2T) sequence assemblies of plant chromosomes were reported recently. However, sequence assemblies of most plant genomes remain fragmented. Only recent breakthroughs in accurate long-read sequencing have made it possible to achieve highly contiguous sequence assemblies with a few tens of contigs per chromosome, i.e. a number small enough to allow for a systematic inquiry into the causes of the remaining sequence gaps and the approaches and resources needed to close them. Here, we analyze sequence gaps in the current reference genome sequence of barley cv. Morex (MorexV3). Optical map and sequence raw data, complemented by ChIP-seq data for centromeric histone variant CENH3, were used to estimate the abundance of centromeric, ribosomal DNA and subtelomeric repeats in the barley genome. These estimates were compared with copy numbers in the MorexV3 pseudomolecule sequence. We found that almost all centromeric sequences and 45S ribosomal DNA repeat arrays were absent from the MorexV3 pseudomolecules and that the majority of sequence gaps can be attributed to assembly breakdown in long stretches of satellite repeats. However, missing sequences cannot fully account for the difference between assembly size and flow cytometric genome size estimates. We discuss the prospects of gap closure with ultra-long sequence reads

    Helical coiling of metaphase chromatids

    No full text
    Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model

    Accessing a russian wheat aphid resistance gene in bread wheat by long-read technologies

    Get PDF
    This is an open access article distributed under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-ncnd/4.0/)PublicationType:FULL_TEXT;Russian wheat aphid (RWA) (Diuraphis noxia Kurdjumov) is a serious invasive pest of small-grain cereals and many grass species. An efficient strategy to defy aphid attacks is to identify sources of natural resistance and transfer resistance genes into susceptible crop cultivars. Revealing the genes helps understand plant defense mechanisms and engineer plants with durable resistance to the pest. To date, more than 15 RWA resistance genes have been identified in wheat (Triticum aestivum L.) but none of them has been cloned. Previously, we genetically mapped the RWA resistance gene Dn2401 into an interval of 0.83 cM on the short arm of chromosome 7D and spanned it with five bacterial artificial chromosome (BAC) clones. Here, we used a targeted strategy combining traditional approaches toward gene cloning (genetic mapping and sequencing of BAC clones) with novel technologies, including optical mapping and long-read nanopore sequencing. The latter, with reads spanning the entire length of a BAC insert, enabled us to assemble the whole region, a task that was not achievable with short reads. Long-read optical mapping validated the DNA sequence in the interval and revealed a difference in the locus organization between resistant and susceptible genotypes. The complete and accurate sequence of the Dn2401 region facilitated the identification of new markers and precise annotation of the interval, revealing six high-confidence genes. Identification of Epoxide hydrolase 2 as the most likely Dn2401 candidate opens an avenue for its validation through functional genomics approaches

    The Silene latifolia genome and its giant Y chromosome

    No full text
    Abstract In some species, the Y is a tiny chromosome but the dioecious plant Silene latifolia has a giant ∼550 Mb Y chromosome, which has remained unsequenced so far. Here we used a hybrid approach to obtain a high-quality male S. latifolia genome. Using mutants for sexual phenotype, we identified candidate sex-determining genes on the Y. Comparative analysis of the sex chromosomes with outgroups showed the Y is surprisingly rearranged and degenerated for a ∼11 MY-old system. Recombination suppression between X and Y extended in a stepwise process, and triggered a massive accumulation of repeats on the Y, as well as in the non-recombining pericentromeric region of the X, leading to giant sex chromosomes. One-Sentence Summary This work uncovers the structure, function, and evolution of one of the largest giant Y chromosomes, that of the model plant Silene latifolia , which is almost 10 times larger than the human Y, despite similar genome sizes

    Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome

    Get PDF
    Background: Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome. Results: Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region. Conclusions: Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere
    corecore