635 research outputs found

    Quantitative determinations and imaging in different structures of buried human bones from the XVIII-XIXth centuries by energy dispersive X-ray fluorescence - Postmortem evaluation

    Get PDF
    In this work, a non-commercial triaxial geometry energy dispersive X-ray Fluorescence (EDXRF) setup and a benchtop mu-XRF system were used to identify postmortem contamination in buried bones. For two of the individuals, unusually high concentrations of Cu and Pb, but also Zn (in one individual) were observed. The pigments of the burial shroud coverings have been identified as the source of contamination.Accurate and precise quantitative results were obtained by nondestructive process using fundamental parameters method taking into account the matrix absorption effects.A total of 30 bones from 13 individuals, buried between the mid-XVlllth to early XIXth centuries, were analyzed to study the elemental composition and elemental distribution. The bones were collected from a church in Almada (Portugal), called Ermida do Espirito Santo, located near the Tagus River and at the sea neighbourhood.The triaxial geometry setup was used to quantify Ca, Fe, Cu, Zn, Br, Sr and Pb of powder pressed bone pellets (n=9 for each bone). Cluster analysis was performed considering the elemental concentrations for the different bones. There was a clear association between some bones regarding Fe, Cu, Zn, Br and Pb content but not a categorization between cortical and trabecular bones. The elemental distribution of Cu, Zn and Pb were assessed by the benchtop p.-analysis, the M4 Tornado, based on a polycapillary system which provides multi-elemental 2D maps. The results showed that contamination was mostly on the surface of the bone confirming that it was related to the burial shroud covering the individuals

    Active children through individual vouchers – evaluation (ACTIVE): protocol for a mixed method randomised control trial to increase physical activity levels in teenagers

    Get PDF
    BackgroundMany teenagers are insufficiently active despite the health benefits of physical activity (PA). There is strong evidence to show that inactivity and low fitness levels increase the risk of non-communicable diseases such as coronary heart disease (CHD), type 2 diabetes and breast and colon cancers (Lee et al. Lancet 380:219–29, 2012). A major barrier facing adolescents is accessibility (e.g. cost and lack of local facilities). The ACTIVE project aims to tackle this barrier through a multi-faceted intervention, giving teenagers vouchers to spend on activities of their choice and empowering young people to improve their fitness and PA levels.DesignACTIVE is a mixed methods randomised control trial in 7 secondary schools in Swansea, South Wales. Quantitative and qualitative measures including PA (cooper run test (CRT), accelerometery over 7 days), cardiovascular (CV) measures (blood pressure, pulse wave analysis) and focus groups will be undertaken at 4 separate time points (baseline, 6 months,12 months and follow-up at 18 months). Intervention schools will receive a multi-component intervention involving 12 months of £20 vouchers to spend on physical activities of their choice, a peer mentor scheme and opportunities to attend advocacy meetings. Control schools are encouraged to continue usual practice. The primary aim is to examine the effect of the intervention in improving cardiovascular fitness.DiscussionThis paper describes the protocol for the ACTIVE randomised control trial, which aims to increase fitness, physical activity and socialisation of teenagers in Swansea, UK via a voucher scheme combined with peer mentoring. Results can contribute to the evidence base on teenage physical activity and, if effective, the intervention has the potential to inform future physical activity interventions and policy

    The extended ramp model: A biomimetic model of behaviour arbitration for lightweight cognitive architectures

    Get PDF
    In this article, we present an idea for a more intuitive, low-cost, adjustable mechanism for behaviour control and management. One focus of current development in virtual agents, robotics and digital games is on increasingly complex and realistic systems that more accurately simulate intelligence found in nature. This development introduces a multitude of control parameters creating high computational costs. The resulting complexity limits the applicability of AI systems. One solution to this problem is to focus on smaller, more manageable, and flexible systems which can be simultaneously created, instantiated, and controlled. Here we introduce a biologically inspired systems-engineering approach for enriching behaviour arbitration with a low computational overhead. We focus on an easy way to control the maintenance, inhibition and alternation of high-level behaviours (goals) in cases where static priorities are undesirable. The models we consider here are biomimetic, based on neuro-cognitive research findings from dopaminic cells responsible for controlling goal switching and maintenance in the mammalian brain. The most promising model we find is applicable to selection problems with multiple conflicting goals. It utilizes a ramp function to control the execution and inhibition of behaviours more accurately than previous mechanisms, allowing an additional layer of control on existing behaviour prioritization systems

    Identification of Type 1 Diabetes-Associated DNA Methylation Variable Positions That Precede Disease Diagnosis

    Get PDF
    Monozygotic (MZ) twin pair discordance for childhood-onset Type 1 Diabetes (T1D) is similar to 50%, implicating roles for genetic and non-genetic factors in the aetiology of this complex autoimmune disease. Although significant progress has been made in elucidating the genetics of T1D in recent years, the non-genetic component has remained poorly defined. We hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology and, thus, performed an epigenome-wide association study (EWAS) for this disease. We generated genome-wide DNA methylation profiles of purified CD14(+) monocytes (an immune effector cell type relevant to T1D pathogenesis) from 15 T1D-discordant MZ twin pairs. This identified 132 different CpG sites at which the direction of the intra-MZ pair DNA methylation difference significantly correlated with the diabetic state, i.e. T1D-associated methylation variable positions (T1D-MVPs). We confirmed these T1D-MVPs display statistically significant intra-MZ pair DNA methylation differences in the expected direction in an independent set of T1D-discordant MZ pairs (P = 0.035). Then, to establish the temporal origins of the T1D-MVPs, we generated two further genome-wide datasets and established that, when compared with controls, T1D-MVPs are enriched in singletons both before (P = 0.001) and at (P = 0.015) disease diagnosis, and also in singletons positive for diabetes-associated autoantibodies but disease-free even after 12 years follow-up (P = 0.0023). Combined, these results suggest that T1D-MVPs arise very early in the etiological process that leads to overt T1D. Our EWAS of T1D represents an important contribution toward understanding the etiological role of epigenetic variation in type 1 diabetes, and it is also the first systematic analysis of the temporal origins of disease-associated epigenetic variation for any human complex disease

    Integrated monitoring of mola mola behaviour in space and time

    Get PDF
    Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of finescale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) videorecorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (r(s) = 0.184, p < 0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's finescale behaviour observed over a two weeks in May 2014

    Sensory and cognitive mechanisms of change detection in the context of speech

    Get PDF
    The aim of this study was to dissociate the contributions of memory-based (cognitive) and adaptation-based (sensory) mechanisms underlying deviance detection in the context of natural speech. Twenty healthy right-handed native speakers of English participated in an event-related design scan in which natural speech stimuli, /de:/ (“deh”) and /deI/ (“day”); (/te:/ (“teh”) and /teI/ (“tay”) served as standards and deviants within functional magnetic resonance imaging event-related “oddball” paradigm designed to elicit the mismatch negativity component. Thus, “oddball” blocks could involve either a word deviant (“day”) resulting in a “word advantage” effect, or a non-word deviant (“deh” or “tay”). We utilized an experimental protocol controlling for refractoriness similar to that used previously when deviance detection was studied in the context of tones. Results showed that the cognitive and sensory mechanisms of deviance detection were located in the anterior and posterior auditory cortices, respectively, as was previously found in the context of tones. The cognitive effect, that was most robust for the word deviant, diminished in the “oddball” condition. In addition, the results indicated that the lexical status of the speech stimulus interacts with acoustic factors exerting a top-down modulation of the extent to which novel sounds gain access to the subject’s awareness through memory-based processes. Thus, the more salient the deviant stimulus is the more likely it is to be released from the effects of adaptation exerted by the posterior auditory cortex
    corecore