70 research outputs found

    Variability survey in the CoRoT SRa01 field: Implications of eclipsing binary distribution on cluster formation in NGC 2264

    Full text link
    Time-series photometry of the CoRoT field SRa01 was carried out with the Berlin Exoplanet Search Telescope II (BEST II) in 2008/2009. A total of 1,161 variable stars were detected, of which 241 were previously known and 920 are newly found. Several new, variable young stellar objects have been discovered. The study of the spatial distribution of eclipsing binaries revealed the higher relative frequency of Algols toward the center of the young open cluster NGC 2264. In general Algol frequency obeys an isotropic distribution of their angular momentum vectors, except inside the cluster, where a specific orientation of the inclinations is the case. We suggest that we see the orbital plane of the binaries almost edge-on.Comment: 18 pages, 8 figures, accepted for publication in Ap

    The Berlin Exoplanet Search Telescope II. Catalog of Variable Stars. I. Characterization of Three Southern Target Fields

    Full text link
    A photometric survey of three Southern target fields with BEST II yielded the detection of 2,406 previously unknown variable stars and an additional 617 stars with suspected variability. This study presents a catalog including their coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of variability. In addition, the variability of 17 known objects is confirmed, thus validating the results. The catalog contains a number of known and new variables that are of interest for further astrophysical investigations, in order to, e.g., search for additional bodies in eclipsing binary systems, or to test stellar interior models. Altogether, 209,070 stars were monitored with BEST II during a total of 128 nights in 2009/2010. The overall variability fraction of 1.2-1.5% in these target fields is well comparable to similar ground-based photometric surveys. Within the main magnitude range of R∈[11,17]R\in\left[11,17\right], we identify 0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness of about one third for this particular type in comparison to space surveys.Comment: accepted to A

    Improved Variable Star Search in Large Photometric Data Sets -- New Variables in CoRoT Field LRa02 Detected by BEST II

    Full text link
    The CoRoT field LRa02 has been observed with the Berlin Exoplanet Search Telescope II (BEST II) during the southern summer 2007/2008. A first analysis of stellar variability led to the publication of 345 newly discovered variable stars. Now, a deeper analysis of this data set was used to optimize the variability search procedure. Several methods and parameters have been tested in order to improve the selection process compared to the widely used J index for variability ranking. This paper describes an empirical approach to treat systematic trends in photometric data based upon the analysis of variance statistics that can significantly decrease the rate of false detections. Finally, the process of reanalysis and method improvement has virtually doubled the number of variable stars compared to the first analysis by Kabath et al. A supplementary catalog of 272 previously unknown periodic variables plus 52 stars with suspected variability is presented. Improved ephemerides are given for 19 known variables in the field. In addition, the BEST II results are compared with CoRoT data and its automatic variability classification.Comment: 16 pages, 15 figures; figure set, machine-readable and VO tables available in the electronic edition of the Astronomical Journa

    The Next Generation Transit Survey (NGTS)

    Get PDF
    © 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher photometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light,maximizing sensitivity to late K and earlyMdwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 deg 2 , enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20 cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras is used to survey fields intensively at intermediateGalactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 h for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full-survey operations in 2016. NGTS data will be made publicly available through the ESO archive

    Transiting exoplanets from the CoRoT space mission XVII. The hot Jupiter CoRoT-17b: a very old planet

    Full text link
    We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43±0.302.43\pm0.30\Mjup and a radius of 1.02±0.071.02\pm0.07\Rjup, while its mean density is 2.82±0.382.82\pm0.38 g/cm3^3. CoRoT-17b is in a circular orbit with a period of 3.7681±0.00033.7681\pm0.0003 days. The host star is an old (10.7±1.010.7\pm1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain ∼\sim380 earth masses of heavier elements.Comment: Published (A&A 531, A41, 2011

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultra-short-period planet (Sanchis-ojeda et al. 2014; Winn et al. 2018). All of the previously known ultra-short-period planets are either hot Jupiters, with sizes above 10 Earth radii (Re), or apparently rocky planets smaller than 2 Re. Such lack of planets of intermediate size (the "hot Neptune desert") has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here, we report the discovery of an ultra-short-period planet with a radius of 4.6 Re and a mass of 29 Me, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite (Ricker et al. 2015) revealed transits of the bright Sun-like star \starname\, every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(-2.9)% of the total mass. With an equilibrium temperature around 2000 K, it is unclear how this "ultra-hot Neptune" managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (Vmag=9.8)

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet1,2. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite3 revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0−2.9+2.7% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (Vmag = 9.8)
    • …
    corecore