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6Center of Astro-Engineering UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile

7School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
8NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA

9Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
10Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

11Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 USA
12NASA Exoplanet Science Institute/Caltech Pasadena, CA, USA

13Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA
02139, USA

14Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussel, Belgium
15Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

16Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
17NASA Ames Research Center, Moffett Field, CA, 94035

18Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
19Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan

20JST, PRESTO, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
21Astrobiology Center, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

22National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
23Instituto de Astrof́ısica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain

24Department of Physics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555 Japan
25George Mason University, 4400 University Drive, Fairfax, VA, 22030 USA

26Campo Catino Astronomical Observatory, Regione Lazio, Guarcino (FR), 03010 Italy
27Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, ON M5S 3H8, Canada

28Centre for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto at Scarborough, Toronto,
Ontario M1C 1A4, Canada

29Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
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ABSTRACT

About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultra-

short-period planet (Sanchis-Ojeda et al. 2014; Winn et al. 2018). All of the previously known ultra-

short-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky

planets smaller than 2 R⊕. Such lack of planets of intermediate size (the “hot Neptune desert”) has

been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope

in the face of strong stellar irradiation. Here, we report the discovery of an ultra-short-period planet

with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the

Transiting Exoplanet Survey Satellite (Ricker et al. 2015) revealed transits of the bright Sun-like star

LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to

thermal evolution models, it has a H/He-rich envelope constituting 9.0+2.7
−2.9% of the total mass. With

an equilibrium temperature around 2000 K, it is unclear how this “ultra-hot Neptune” managed to

retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its

origin and physical nature will be facilitated by the star’s brightness (Vmag = 9.8).

1. MAIN MANUSCRIPT

Using high precision photometry from Sector 2 of the Transiting Exoplanet Survey Satellite (TESS ) mission at a

cadence of two minutes, a candidate transiting planet was flagged for the star LTT 9779 (Jenkins et al. 2016). The

candidate was released as a TESS Alert in October 2018, and assigned the TESS Object of Interest (TOI) tagname

TOI-193 (TIC183985250). The TESS lightcurve was scrutinised prior to its public release. No transit depth variations

were apparent, no motion of the stellar image was detected during transits, and no secondary eclipses could be found.

Data from the Gaia spacecraft (Gaia Collaboration et al. 2016, 2018) revealed only one background star within the

TESS photometric aperture, but it is 5 mag fainter than LTT 9779 and hence cannot be the source of the transit-like

signals, and no significant excess scatter was witnessed in the Gaia measurements. The lack of all these abnormalities

supported the initial interpretation that the transit signals are due to a planet with an orbital period of 19 hours and

a radius of 3.96 R⊕.

We also observed four complete transits with ground-based facilities: three with the Las Cumbres Observatory (LCO)

and one with the Next Generation Transit Survey (NGTS; Wheatley et al. 2018) telescopes. The LCO and NGTS data

have a similar precision to the TESS light curve and much better angular resolution. The observed transit depths were

in agreement with the depth observed with TESS. High-angular resolution imaging of LTT 9779 was performed with

adaptive optics in the near-infrared using NIRC2 at the Keck Observatory, and with speckle imaging in the optical

using HRCam on SOAR at the Cerro-Tololo Inter-American Observatory. No companions were detected within a

radius of 3′′ down to a contrast level of 7.5 magnitudes, and no bright close binary was seen with a resolution of 0.05′′

(see the SI). These observations sharply reduce the possibility that an unresolved background star is the source of the

transits. We also tested the probability of having background or foreground stars within a region of 0.1′′ separation

(AO limit) from the star, using a Besançon (Robin et al. 2003) model of the galaxy. The model indicates we can

expect over 2200 stars in a 1 square degree field around LTT 9779 providing a probability of only 0.0005% of having

a star down to a magnitude limit of 21 in V contaminating the lightcurves. If we consider only objects bright enough

to cause contamination of the transit depth that would significantly alter the planet properties, this probability drops

even more (see the Supplementary Information (SI) for more details). Furthermore, although there exists a 13.5%

probability that LTT 9779 could be part of a binary system that passes within this separation limit, spectral analysis

rules out all allowable masses whose contaminant light that would be required to push LTT 9779 b outside of the

Neptune desert.

∗ Corresponding author E-mail: jjenkins@das.uchile.cl
† Winton Fellow
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Final confirmation of the planet’s existence came from high-cadence radial-velocity observations with the High

Accuracy Radial-velocity Planet Searcher (HARPS; Pepe et al. 2000). A sinusoidal radial-velocity (RV) signal was

detected with the EMPEROR code (Peña Rojas & Jenkins 2020) independently of the transit data, but with a matching

orbital period and phase. No other significant signals were detected, nor were any longer-term trends, ruling out

additional massive planets with orbital periods of a few years or less. Likewise, no transit-timing variations were

detected (see the SI).

To determine the stellar properties, we combined the Gaia data with spectral information from HARPS, along with

other spectra from the Tillinghast Reflector Echelle Spectrograph (TRES; Fűrész et al. 2008) and the Network of

Robotic Echelle Spectrographs (NRES; Siverd et al. 2018) and compare the star’s observable properties to the outputs

from theoretical stellar-evolutionary models (MIST and Y2). We also used our new ARIADNE code to precisely calculate

the effective temperature and stellar radius (see SI for more information on these methods). The star was found to have

a mass, radius, and age of 1.02+0.02
−0.03 M�, 0.949±0.006 R�, and 2.0+1.3

−0.9 Gyrs, respectively. The effective temperature

and surface gravity are consistent with a main-sequence star slightly cooler than the Sun. The spectra also revealed

the star to be approximately twice as metal-rich as the Sun ([Fe/H] = +0.25±0.04 dex). Table 1 displays all the

parameter values.

We utilised the juliet code (Espinoza et al. 2019) to perform a joint analysis of the transit and radial-velocity

data (Figure 1). The period, mass, and radius of the planet were found to be 0.792054 ± 0.000014 d, 29.32+0.78
−0.81 M⊕,

and 4.72 ± 0.23 R⊕, respectively. The orbit is circular to within the limits allowed by the radial-velocity data (the

posterior odds ratio is 49:1 in favor of a circular model over an eccentric model).

LTT 9779 b sits in the hot Neptune desert (Mazeh et al. 2016) (Figure 2), providing an opportunity to study

the link between short-period gas giants and lower mass super-Earths. The planet’s mean density is similar to that

of Neptune, and the planet’s mass and radius are incompatible with either a pure rock or pure water composition

(Figure 3), implying that it possesses a substantial H/He gaseous atmosphere. Using 1-D thermal evolution models

from Lopez & Fortney (2014), assuming a silicate and iron core and a solar composition gaseous envelope, we find a

planet core mass of 27.9+1.2
−1.0 M⊕, and an atmospheric mass fraction of 9.0+2.7

−2.9%. We also tested other planet structures,

and even in the limiting case of a non-physical pure water-world, there still exists a significant H/He-rich envelope, at

the level of 2.2+1.1
−1.6%. When combined with the high equilibrium temperature for the planet of 1978 ± 19 K, this makes

LTT 9779 b an excellent target for future transmission spectroscopy, secondary eclipse studies, and phase variation

analyses. All of the planetary model parameters are in Table 2.

LTT 9779 b is the most highly irradiated Neptune-sized planet yet found. It is firmly in the region of parameter

space known as the ”evaporation desert” where observations have shown a clear absence of similarly sized planets

(Sanchis-Ojeda et al. 2014; Lundkvist et al. 2016), and models of photo-evaporative atmospheric escape predict that

such low density gaseous atmospheres should be evaporated on short timescales (Lopez 2017; Owen & Wu 2017).

As LTT 9779 b is a mature planet found in this desert, it is a particularly high priority target for transmission

spectroscopy at wavelengths that probe low density material escaping from planetary upper atmospheres such as

Lyman Alpha (Ehrenreich et al. 2015), FUV metal-lines (Vidal-Madjar et al. 2004), Ca and Fe lines (Casasayas-Barris

et al. 2019), and the 1.083 µm Helium line (Nortmann et al. 2018).

An interesting comparison can be made between LTT 9779 b and NGTS-4 b (West et al. 2019), the most similar of all

the other known planets. NGTS-4 b is not as hot (〈Teq 〉a = 1650±400 K) or short-period (P = 1.337351±0.000008 d)

as LTT 9779 b, has a much higher density of 3.45 g/cm3, and orbits a metal-poor star ([M/H] = −0.28 ± 0.10 dex).

These characteristics may be clues that the two planets formed differently: NGTS-4 b may have formed as a relatively

small and dense world, whereas LTT 9779 b started life as a much larger and less dense planet (see Figure 4). Indeed,

photoevaporation models posit that the bulk population of ultra-short period planets form by growing to around

3 M⊕, through the accretion of various amounts of light elements from the proto-planetary disk. The intense radiation

from the young star then evaporates these close-in planets over an interval on the order of 108 yrs, leaving behind

small rocky planets with radii less than 1.5 R⊕ (Owen & Wu 2017). The more massive population of planets can

hold onto the bulk of their envelopes until the star becomes quiescent, leaving behind planets with radii 2−3 R⊕.

However, these planets are generally found to have orbital periods beyond one day, similar to NGTS-4 b, reaching out

to 100 days or so. Ultra-short period planets with these radii are rare, and it may be that since LTT 9779 b likely has

a large mass, it can hold onto a high fraction of its atmosphere. It could also have migrated to its current position

over a longer dynamical timescale, 109 years, not leaving enough time to blow-off a large fraction of its atmosphere by

photoevaporation.
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Assuming energy-limited atmospheric escape, and adopting the current mass, radius and orbital separation of

LTT 9779 b, we estimate mass loss rates of 2 − 8 × 1012 g s−1 during the saturated phase of X-ray emission (for

efficiencies of 525%; Owen & Jackson 2012; Ionov et al. 2018). Assuming the X-ray evolution given by Jackson et al.

(2012) and the corresponding extreme-ultraviolet emission by Chadney et al. (2015) and King et al. (2018) we estimate

a total mass loss of 29 M⊕. Considering instead the hydrodynamic calculations by Kubyshkina et al. (2018), this mass

loss increases to be greater than the total mass of the planet, and employing the detailed atmospheric escape evolution

model of Lopez (2017) suggests that the planet could have had an atmospheric mass fraction of up to ∼60% of the

total planet mass, or around half that of Saturn (∼44 M⊕). This means that LTT 9779 b could not have formed in

situ with properties close to those we measure here, ruling out such a model. Conversely, adopting an initial planet

mass and radius equal to that of Jupiter, we estimate a mass-loss of 5.5×1028 g over the current age of the system,

which would only be ∼3% of the total initial planet mass. Therefore, we can be sure that if the planet began as a

Jupiter-mass gas giant, photoevaporation cannot be the sole mechanism that removed most of its atmosphere.

One possible mechanism for atmospheric loss is Roche Lobe Overflow (RLO; Valsecchi et al. 2015). Planets with

masses of ∼1 MJ orbiting solar-mass stars can fill their Roche Lobes for orbital periods approaching 12 hours. For

progenitor hot Jupiters with large cores (∼30 M⊕), the initial migration inwards to the RLO orbit is driven by tidal

interaction with the host star. The migration can then reverse as mass is stripped from the planet at a rate of 1013-

− 1014 g s−1 and continues on for a Gyr or so, assuming the escaping material settles in an accretion disk around

the star and transfers its angular momentum back to the planet. The planet can migrate outwards, reaching an

orbital period of ∼0.8 days, before inward migration can resume. Planets with smaller masses undergo later inward

migration within the mass loss phase. After the completion of RLO, these planets remain with an atmosphere in the

region of 7−10%, in agreement with that of LTT 9779 b, (assuming the planet is not still currently undergoing RLO).

Although these planets terminate with no atmosphere and an orbital period of only 0.3 days after 2.1 Gyrs of evolution,

commensurate with the current age of LTT 9779 b, less massive planets terminate with orbital periods longer than

more massive ones, and their mass loss period increases also. Although some of these models qualitatively fit the data

observed for LTT 9779 b, more work is still required to provide a stronger, more realistic description of the formation

history of this system. Finally, such a model is also dependent on the assumption that LTT 9779 b started life as a

gas giant planet, which is plausible given the planet’s large heavy element abundance, and the fact that metal-rich

stars are more commonly found to host gas giant planets than more metal-poor stars (Fischer & Valenti 2005).
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Table 1. Stellar properties of LTT 9779

Alternative Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LTT 9779

TIC 183985250 TESS

HIP 117883 HIPPARCOS

2MASS J23544020-3737408 2MASS

TYC 8015-1162-1 TYCHO

Catalogue Data

RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (J2000) 23h54m40.60s TESS

DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (J2000) -37d37m42.18s TESS

pmRA (mas yr−1) 247.615 ± 0.076 GAIA

pmDEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mas yr−1) -69.801 ± 0.062 GAIA

π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mas) 12.403 ± 0.049 GAIA

Photometric Data

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 9.10 ± 0.02 TESS

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 10.55 ± 0.04 TYCHO

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 9.76 ± 0.03 TYCHO

G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 9.6001 ± 0.0003 GAIA

J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 8.45 ± 0.02 2MASS

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 8.15 ± 0.02 2MASS

Ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 8.02 ± 0.03 2MASS

WISE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 7.94 ± 0.02 WISE

WISE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 8.02 ± 0.02 WISE

WISE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 8.00 ± 0.02 WISE

Spectroscopic, Photometric, and Derived Properties

Teff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (K) 5445 ± 84 SPECIES

log g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (dex) 4.43 ± 0.31 SPECIES

[Fe/H] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (dex) +0.25 ± 0.08 SPECIES

v sin i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (km s−1) 1.06 ± 0.37 SPECIES

vmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (km s−1) 1.98 ± 0.29 SPECIES

Teff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (K) 5496 ± 80 ZASPE

log g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (dex) 4.51 ± 0.01 ZASPE

[Fe/H] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (dex) +0.24 ± 0.05 ZASPE

v sin i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (km s−1) 1.7 ± 0.5 ZASPE

Teff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (K) 5499 ± 50 SPC

log g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (dex) 4.47 ± 0.10 SPC

[m/H] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (dex) +0.31 ± 0.08 SPC

v sin i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (km s−1) 2.2 ± 0.5 SPC

Teff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (K) 5443+14
−13 ARIADNE

log g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (dex) 4.35+0.16
−0.12 ARIADNE

[Fe/H] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (dex) +0.27 ± 0.03 ARIADNE

M? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (M�) 1.03+0.03
−0.04 SPECIES + MIST

M? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (M�) 1.00+0.02
−0.03 YY + GAIA

M? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (M�) 0.77+0.29
−0.21 ARIADNE

R? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (R�) 0.95 ±0.01 SPECIES + MIST

R? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (R�) 0.92 ± 0.01 GAIA + This work

R? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (R�) 0.949 ± 0.006 ARIADNE

L? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (L�) 0.68± 0.04 YY + GAIA

L? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (L�) 0.71± 0.01 ARIADNE

MV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (mag) 5.30 ± 0.07 YY + GAIA
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Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Gyr) 2.1+2.2
−1.4 SPECIES + MIST

Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Gyr) 1.9+1.7
−1.2 YY + GAIA

ρ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (g cm−3) 1.81+0.06
−0.07 YY + GAIA

Spectral Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G7V This work

< SHARPS > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.148±0.008 This work

< logR′HK,HARPS > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -5.10±0.04 This work

Prot,v sin i (days) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 This work
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Table 2. Transit, orbital, and physical parameters of LTT 9779 b. For
the prior descriptions, which are the expected probability distributions
for each of the fit parameters, N(µ, σ) represents a normal distribution
with mean µ and standard deviation σ, whereas U(a, b) and J(a, b) rep-
resent a uniform prior and Jeffrey’s prior, both defined between points
a and b, respectively (see Methods: Global Modelling for more informa-
tion).

Parameter Prior Value

Light-curve parameters

P (days) N(0.792, 0.1) 0.7920520± 0.0000093

T0 (days) N(2458354.22, 0.1) 2458354.21430± 0.00025

r1 U(0, 1) 0.9417+0.0048
−0.0060

r2 U(0, 1) 0.0454+0.0022
−0.0017

ρ? (kg/m3) N(1810, 130) 1758+125
−121

q1,TESS U(0, 1) 0.45+0.20
−0.16

q2,TESS U(0, 1) 0.43+0.35
−0.30

q1,NGTS U(0, 1) 0.63+0.25
−0.32

q2,NGTS U(0, 1) 0.55+0.31
−0.35

RV parameters

K (m s−1) U(−100, 100) 19.65+0.43
−0.43

e 0 0

ω (deg) 90 90

γCoralie (m s−1) N(0, 100) −5.09+2.20
−2.20

γHARPS (m s−1) N(0, 100) −4.40+0.30
−0.31

σCoralie (m s−1) J(10−2, 100) 8.03+2.15
−1.74

σHARPS (m s−1) J(10−2, 100) 1.43+0.28
−0.24

Derived parameters

Rp/R? – 0.0455+0.0022
−0.0017

a/R? – 3.877+0.090
−0.091

i – 76.39± 0.43

Mp (M⊕) – 29.32+0.78
−0.81 M⊕

Rp (R⊕) – 4.72 ± 0.23 R⊕

〈Teq 〉a (K) – 1978 ± 19

a (AU) – 0.01679+0.00014
−0.00012

ρp (g cm−3) – 1.536± 0.123
a Equilibrium temperature using equation 4 of

Méndez & Rivera-Valent́ın (2017) with A = 0.4, β = 0.5, and ε = 1.

Correspondence and requests for materials should be addressed to James S. Jenkins (jjenkins@das.uchile.cl).
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Figure 1. Transit lightcurves and phase folded RVs for LTT9779 The left top panel shows the discovery TESS
lightcurve averaging over 33 transits, with the center and right panels showing the single transit follow-up photometry from
NGTS and LCOGT for LTT 9779, with a 0.8 day period, and including the associated transit model using the parameters shown
in Table 2. The full data set is shown by the small points and the binned data is superimposed on these as the larger and darker
points with associated uncertainties. The lower panel shows the 31 HARPS radial-velocities in blue and 18 Coralie measurements
in orange (see Table 3), also folded to the period of the planet, and with their respective uncertainties. The mean uncertainty
of the Coralie velocities is a factor of 10 larger than those from HARPS. The best fit model is again overplotted on the data.
The TESS NGTS and LCOGT photometry, along with the HARPS and Coralie velocities were fit simultaneously to ensure the
best constraints possible on the planet parameters, along with a more accurate description of the overall uncertainties.

2. EXTENDED DATA
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Figure 2. LTT9779 b in the period-mass and period-radius planes. The top plot shows all currently confirmed planets
with a fractional mass uncertainty below 30%, separated in colour by their detection method. The lower plot shows all currently
confirmed transit planets with a fractional radius uncertainty below 5%. LTT 9779 b is clearly isolated in the Neptune desert
in period-mass-radius space, meaning it is heavily decoupled from the current populations of known exoplanets.
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Figure 3. LTT9779 b in the mass-radius plane. The plot includes all non-gas giant ultra-short period planets with
well constrained Doppler masses. LTT 9779 b is marked by the red square. Structure models from Zeng et al. (2016) are
plotted as solid curves and labelled depending on the bulk composition of the planet. The models range from a 100% iron core
planet, through to a 100% water world. The ultra-short period planets all agree with rocky-iron compositions, explained by
photoevaporation of their primordial atmospheres. LTT 9779 b is significantly larger, indicating that it has a residual hydrogen
and helium atmosphere around the core. Dashed iso-density curves are shown in green for reference, highlighting the similar
densities between Neptune and LTT 9779 b. For reference, Venus, Earth, Uranus, and Neptune are represented in the plot.
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Figure 4. Distribution of planetary densities as a function of host star metallicity for currently known transiting
planets with orbital periods less than 1.3 days. The sample is split into those with masses less than 0.1MJ (green circles;
ultra-short period planet proxies) and those with masses above (red circles; ultra-hot Jupiter proxies). The ultra-hot Neptune
LTT 9779 b and longer period NGTS-4 b are clearly labelled in the figure. The blue curve is a power law described by
3.5× [(NFe/NH)/(NFe/NH)�]−2.5 +0.8, which bounds the regions governed by the physical processes that determine the planet
bulk properties. Those physical processes and the direction in which they move planets are shown in the plot.
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Figure 5. Normalised TESS pre-search data conditioning timeseries photometry for LTT9779 with the optimal
model (black curve) overplotted on the data (top). The model residuals are shown in the lower panel.

3. METHODS

TESS Photometry Treatment

TESS observed the star LTT 9779 (HIP 117883, TIC 183985250, TOI 193) using Camera 2 (CCD 4), between UT

2018 Aug 23 and Sep 20 (JD 2458354.11439 − 2458381.51846), part of the Sector 2 observing campaign. The short

cadence time sampling of the data was set to two minutes, and data products were then processed on the ground using

the Science Processing Operations Center (SPOC) pipeline package (Jenkins et al. 2016), a modified version of the

Kepler mission pipeline (Smith et al. 2012; Stumpe et al. 2014; Twicken et al. 2018; Li et al. 2019). SPOC delivers

Data Validation Reports to MIT. These reports document so-called ”Threshold Crossing Events” identified by the

SPOC pipeline, namely dips that could conceivably be due to transiting planets. A team in the TESS Science Office

then reviews the reports, including analogous reports from analysis of the Full Frame Images using the Quick-Look

Pipeline developed at MIT. There are many criteria that go into deciding whether a TCE is an instrumental artifact or
false alarm (e.g. due to low SNR), or an astrophysical false positive due to eclipsing binaries contaminating the TESS

photometry or otherwise masquerading as transiting planets. This is the so-called vetting process. Candidates that

survive vetting are then assigned TOI numbers and announced to the public, e.g. at MAST, and then work by the

TESS Follow-up Observing Program Working Group begins, tracking down TOIs that are not planets but could not

be rejected based on the information available to the vetting team. TOIs that survive the reconnaissance work of the

TFOP WG can then move on to precision RV work. LTT 9779 b was released as a TESS alert on the 4th of October

2018, and assigned the code TESS Object of Interest (TOI) 193. As part of the alert process candidate vetting, the

light curve modeling did not show any hints of abnormality, such that no transit depth variations were apparent, no

PSF centroiding offsets were found, and no secondary eclipses report, giving rise to a bootstrap false alarm probability

(FAP) of 2×10−278.

In Figure 5 we show the TESS pre-search data conditioning light curve for LTT 9779, after removal of points that

were flagged as being affected by excess noise. Given the quiescent nature of the star, the photometric light curve

is fairly flat across the full time series, with the small transits (1584 ± 43 ppm) readily apparent to the eye. This

simplified the modeling effort, giving rise to the small residual scatter shown in the figure.

Follow-up NGTS Photometry
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Photometric follow-up observations of a full transit of LTT 9779 b was obtained on UT 2018 Dec 25 using the Next

Generation Transit Survey (NGTS) at ESO’s Paranal observatory (Wheatley et al. 2018). We used a new mode of

operation in which nine of the twelve individual NGTS telescopes were used to simultaneously monitor LTT 9779

(Smith et al. 2020). We find that the photometric noise is uncorrelated between the nine telescopes, and therefore we

improve the photometric precision by a factor of three compared to a single NGTS telescope. The observations were

obtained in photometric conditions and at airmass < 2. A total of 6502 images were obtained, each with an exposure

time of 10 s using the custom NGTS filter (520−890 nm). The observations were taken with the telescope slightly

defocussed to avoid saturation. The telescope guiding was performed using the DONUTS auto-guiding algorithm

(McCormac et al. 2013), which resulted in an RMS of the target location on the CCD of only 0.040 pix, or 0.2 ′′,. Due

to this high precision of the auto-guiding, the use of flat fields during the reduction of the images was not required.

Comparison stars were chosen manually and aperture photometry was performed on the images using a custom

aperture photometry pipeline. The wide field-of-view provided by NGTS enabled the selection of a good number of

suitable comparison stars, despite LTT 9779 being a relatively bright star. When combined, the resulting photometry

showed the transit signal of TOI-193 with a depth and transit centre time consistent with the TESS photometry. The

combined NGTS light curve has a precision of 170 ppm over a half hour timescale, which is a comparable to the TESS

precision of 160 ppm over this timescale (for a single transit).

Dilution Probability

Given the reality of the transit as ’on-source’, the issue of dilution of the light curve by a foreground or background

star is considered in a probabilistic sense. In this case, we aim to test the probability of having a blended star so close

to the star angularly on the sky, that the AO observations would not have detected it. The AO sensitivity deteriorates

quickly below 0.5′′ or so, with low sensitivity to objects with angular separations of 0.1′′ or less on sky.

3.1. Background or Foreground Contaminant

With this in mind, we used the Besançon galactic model (Robin et al. 2003) to generate a representative star field

around the position of LTT 9779, with the aim of testing the likelihood of having a diluted star that significantly affects

the transit parameters. The model has been used in a similar manner previously. For instance, in Fressin et al. (2013)

they applied the model to test the probability that each of the Kepler transit planet candidates in their study was the

result of a blended eclipsing binary. We selected all stars within a one square degree box surrounding our target, down

to the magnitude limit of V = 21 that the model provides. This gave rise to over 2200 stars to work with, for which

we randomly assign positions in RA and Dec using a uniform random number generator, constrained to be within the

selected box boundaries. We then ran the simulation 10 million times to generate a representative sample, recording

all the events where a star passed within a separation of 0.1′′ from LTT 9779, and finally normalising by the number

of samples probed. The test returned only 48 events, providing a probability to have such a close separation between

two stars in this field of only 4.8 × 10−6 (0.0005%).

Although the probability we found is very small, it is actually an upper limit. Blending by stars as faint as 21st

magnitude for instance, does not affect the transit depth enough to push the radius of the planet above the Neptune

desert. The faintest population of stars in our test, which also represents the most abundant population, biases the

probability to larger values. For instance, if we take the mean of the final bin (20.5 magnitudes), we have a magnitude

difference from LTT 9779 of 10.2, which relates to an effect at the level of 83 ppm, only 5% of the observed transit

depth. If LTT 9779 b is truly a hot Jupiter, then in order to push it out of the Neptune desert, given its orbital period

and current radius, we require dilution from a star of ∼5.5 magnitudes or brighter, limiting our test to only stars in

magnitude bins of 16 or less. Performing this test decreases further the probability down to 1 × 10−6 (0.00001%),

ruling out the possibility that dilution of the light curves is the reason the planet falls in such an isolated part of the

parameter space.

3.2. Binary Star Contaminant

Although a non-bound stellar contaminant is unlikely to be diluting the transit of LTT 9779 b sufficiently to push

it out of the Neptune desert, a binary companion is likely to have a higher chance to be present and tightly separated

to LTT 9779. Therefore, we performed Monte Carlo simulations to test how likely having a stellar binary that is

bright enough to dilute the transit lightcurve sufficiently would be. We simulated 105 binary systems, drawing the

system parameters from the probability density functions (PDFs) calculated in Raghavan et al. (2010). Here the
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orbital log-period PDF in days is a normal distribution with mean of 5.03 and standard deviation of 2.28. Most other

parameters like eccentricity, the orbital angles, and the mass ratio, were simulated using uniform distributions within

their respective bounds. Only the system inclinations were drawn from a cosine PDF.

When simulating the systems, we normalized each by the fraction of the orbital period that the secondary star

would spend within 0.1′′ of the primary. Therefore, systems that never approached within this angular separation were

assigned a fractional time (Tf ) of zero, those that always were found within this limit were assigned a value of unity,

and the rest were assigned a value between 0−1 depending on the fractional time spent within this distance. With

these calculations we could apply the formulism P = (
∑n=Nt

n=1 PnTf,n)/Nt, where the probability P is the sum total

of fractional probabilities PnTf,n across all samples, normalised by the total number of samples Nt. Finally, we then

normalised by the 46% fraction of such stars found to exist in binaries.

With these simulations we arrived at a value of 13.5% for the probability that LTT 9779 has a binary companion that

could be found within an angular separation of 0.1′′ at any one time. Although this is a relatively large probability,

this is integrated across all binary mass fractions, and therefore does not take into account that only a small mass

range is permitted by the spectral analysis. When we account for the cross correlation function analysis discussed

below, the probability drops to essentially zero, since the larger secondary masses required to affect the transit depth

sufficiently are all ruled out.

Gaia Variability

Another way to probe for very closely separated stars on the sky is to study the measurements made by Gaia,

in particular the excess noise parameter ε and the Tycho-Gaia astrometric solution (TGAS) discrepancy factor ∆Q

(Lindegren et al. 2012; Michalik et al. 2014; Lindegren et al. 2016). These can be used to look for excess variability in

the observations that are indicative of blended starlight from a foreground or background star, spatially close enough

that they can not be resolved by the instrument.

Both the ε and ∆Q parameters are listed in Gaia DR1 as standard outputs, however Gaia DR2 only reports the

excess noise, which turns out to be unreliable for stars with G <∼13 (Lindegren et al. 2018). ∆Q measures the

difference between the proper motion derived in TGAS and the proper motion derived in the Hipparcos Catalog (van

Leeuwen 2007). Also, Rey et al. (2017) utilised both ∆Q and ε to show the lack of binarity for some stars. ∆Q

is expected to follow a χ2 distribution with two degrees of freedom for single stars. The Gaia DR1 ε and ∆Q for

LTT9779 are 0.394 (with a significance of 134.281) and 2.062, respectively. According to Lindegren et al. (2016), all

sources obtain a significant excess source noise of ∼0.5 mas, due to poor attitude modeling (so an excess noise > 1 - 2

could indicate binarity), and a significance > 2 indicates that the reported excess noise is significant, therefore, from

excess noise alone, LTT 9779 is astrometrically well behaved and shows no evidence of binarity. While Michalik et al.

(2014) reports a ∆Q threshold of 15.086 for a star to be well behaved (at a significance level of 1%), Lindegren et al.

reduces this threshold to 10. This means that any star with ∆Q < 10 is considered to be astrometrically well be-

haved, again showing that this star is highly likely to be uninfluenced by contaminating light from a background object.

Follow-up Spectroscopy

3.3. NRES Spectroscopy

In order to aid in characterisation of the host star we used the LCO robotic network of telescopes (Brown et al. 2013)

and the Robotic Echelle Spectrographs (NRES; Siverd et al. 2018). We obtained 3 spectra, each composed of 3 x 1200

sec exposures, on UT 2018 Nov 5, 8, and 9. All three spectra were obtained with the LCO/NRES instrument mounted

on a 1 m telescope at the LCO CTIO node. The data were reduced using the LCO pipeline resulting in spectra with

SNR of 61−73. We have analyzed the spectra using SpecMatch while incorporating the Gaia DR2 parallax using the

method described by Fulton & Petigura (2018). The resulting host stars parameters contributed to those listed in

Table 1.

3.4. TRES Spectroscopy

We obtained two reconnaissance spectra on the nights of UT2018-11-04 and UT2018-11-05 using the Tillinghast

Reflector Echelle Spectrograph (TRES; Fűrész et al. 2008) located at the Fred Lawrence Whipple Observatory (FLWO)

in Arizona, USA. TRES has a resolving power of ∼44,000, covering a wavelength range of 3900−9100Å, and the

resulting spectra were obtained with SNRs of ∼35 at 5200Å. The spectra were then reduced and extracted as described
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in Buchhave et al. (2010), whereby the standard processing for echelle spectra of bias subtraction, cosmic ray removal,

order-tracing, flatfielding, optimal extraction (Horne 1986), blaze removal, scattered-light subtraction, and wavelength

calibration was applied. The Spectral Parameter Classification tool (Buchhave et al. 2012) was used to measure the

stellar quantities we show in Table 1.

3.5. HARPS Spectroscopy

Upon examination of the light curve we decided to perform high cadence follow-up spectroscopic observations with

the High-Accuracy Radial velocity Planet Search spectrograph (HARPS; Pepe et al. 2000) installed at the ESO 3.6m

telescope in La Silla, in order to fully cover the phase space. We started observing LTT 9779 on Nov 6th 2018. From an

initial visual examination of the spectra and cross correlation function (CCF) of the online Data Reduction Software

(DRS), it was consistent with no evidence of blending with other stellar sources nor as being a fast rotator or active,

based on the width of the CCF and various activity indicators.

We acquired 32 high-resolution (R∼ 115,000) spectroscopic observations between 2018 Nov 6 and Nov 9, Dec 11 to

13, and Dec 28 to Dec 30, where for the nights of Nov 7,8 and 9th we observed the star four times throughout the night

to fully sample the orbital period. We integrated for 1200s, using a simultaneous Thorium-Argon lamp comparison

source feeding fiber B, and we achieved a mean signal-to-noise ratio of ∼65.4. We then reprocessed the observations

using the HARPS-TERRA analysis software (Anglada-Escudé & Butler 2012) where a high-signal to noise template

is constructed from all the observed spectra. Then the radial velocities are computed by matching each individual

observation to the template, and we list these measurements in Table 3.

HARPS-TERRA receives the observed spectra, stellar coordinates, proper motions, and parallaxes as input param-

eters. The output it produces then consists of a series of radial velocities that are calculated for a given wavelength

range in the echelle. We used the weighted radial-velocities that were calculated starting from the 25th order of the

HARPS echellogram, which is centered at a wavelength of 4500 Å. We chose this wavelength range since the uncer-

tainties it produced had the lowest MAD1 value. This is likely due to increased stellar activity noise that affects the

bluest orders the most, combined with relatively low signal-to-noise ratios, and therefore removing these orders allows

higher precision to be reached. It was with this data that we performed the EMPEROR (Peña Rojas & Jenkins 2020)

fitting, providing the independently confirmed and constrained evidence for LTT 9779 b (Figure 6). For instance, the

Doppler orbital period was found to be 0.7920 ±0.0001 d, in excellent agreement with that provided by the TESS

transit fitting, and allowing the period to be constrained in the joint fit to one part in 80’000 (0.001%). We also used

this spectra to test if possible spectral line asymmetries and/or activity related features could be driving the signal.

In particular, we searched for linear correlations between the spectral bisector inverse slope measurements and the

radial-velocities (see Figure 7), along with performing period searches using Generalized Lomb Scargle periodograms

(Zechmeister & Kürster 2009) and Bayesian methods with the EMPEROR code. The Spearman correlation coefficient

between the BIS and RVs is found to be 0.22 with a p-value of 0.22, meaning there exists no strong statistical evidence

to reject the null hypothesis that such a weak correlation has arisen by chance. From the periodogram analyses, no sta-

tistically significant periodicities were detected with false alarm probabilities of less than 0.1%, our threshold for signal

detection. We also performed the same analyses on the full width at half maximum of the HARPS cross-correlation

function, and chromospheric activity indicators like the S, Hα, and HeI indices, again with no statistically significant

results encountered.

Finally, we also reprocessed the HARPS spectra to generate CCFs with binary masks optimised for spectral types

between G2-M4, but across a wider ±200 km s−1range in velocity to check for weaker secondary CCFs that could be

due to additional, nearby companions. We took a typical HARPS LTT 9779 spectrum and injected mid-to-late M star

spectra with decreasing SNRs, until we could not detect the M star CCFs no more, providing an upper limit on the

mass of any contaminating secondary. From analysis of the mean flux ratio between the M stars and LTT 9779, we

found that we should be able to detect stellar contaminants down to a mass of 0.19 M�, using the mass-luminosity

relation of Benedict et al. (2016), however no companion CCFs were detected. Such a companion would have a

magnitude difference of over 7.5, and since we previously calculated above that a maximum magnitude difference of

5.5 would be required to push LTT9779b out of the Neptune Desert, the limits permitted by the CCF analysis show

that a diluted companion would not change the conclusions of our work.

1 Median Absolute Deviation = median(|xi −median(x)|
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3.6. Coralie Spectroscopy

Additional phase coverage was performed using the Coralie spectrograph installed in the 1.2 m Swiss Leonhard

Euler Telescope at the ESO La Silla Observatory in Chile. Coralie has a spectral resolution of ≈60000 and uses a

simultaneous calibration fibre illuminated by a Fabry-Perot etalon for correcting the instrumental radial-velocity drift

that occurs during the science exposures. The star was observed a total of 18 times throughout the nights of 2018 Nov

15 to Nov 20. The adopted exposure time for the Coralie observations was 1200s, and the SNR obtained per resolution

element at 5150 Å ranged between 50 and 60. Coralie data was processed with the CERES pipeline (Brahm et al.

2017), which performs the optimal extraction of the science and calibration fibres, the wavelength calibration and

instrumental drift correction, along with the measurement of precision radial-velocities and bisector spans by using

the cross-correlation technique. Specifically, a binary mask optimised for a G2-type star was used to compute the

velocities for LTT 9779. The typical velocity precision achieved was ≈5 ms−1, which allowed the identification the

Keplerian signal with an amplitude of 20 −1.

Table 3. Radial-velocities of LTT 9779

JD - 2450000 RV Uncertainty Instrument

(m s−1) (m s−1)

8429.51804 -10.59 0.86 HARPS

8430.54022 -16.91 0.74 HARPS

8430.59553 -9.41 0.68 HARPS

8430.67911 1.99 0.79 HARPS

8430.76201 13.40 1.21 HARPS

8431.51068 6.71 0.61 HARPS

8431.64346 16.09 0.83 HARPS

8431.69130 14.98 0.87 HARPS

8431.73217 8.41 0.55 HARPS

8432.50941 12.77 0.73 HARPS

8432.65689 -7.23 0.94 HARPS

8432.69804 -13.45 1.06 HARPS

8432.72573 -18.32 4.02 HARPS

8464.53817 -25.17 1.02 HARPS

8464.64153 -16.81 1.11 HARPS

8464.68616 -10.08 1.27 HARPS

8465.53024 0.00 0.85 HARPS

8465.59314 10.82 0.84 HARPS

8465.64411 12.09 0.86 HARPS

8465.68104 15.61 1.12 HARPS

8466.52022 14.89 1.03 HARPS

8466.58232 8.12 0.90 HARPS

8466.63157 2.49 1.09 HARPS

8466.66865 -2.85 1.10 HARPS

8481.53213 14.93 0.94 HARPS

8481.57805 12.72 0.84 HARPS

8482.53643 -8.75 0.74 HARPS

8482.57255 -11.89 0.82 HARPS

8482.60140 -16.09 0.90 HARPS

8483.52686 -24.82 0.80 HARPS

8483.59338 -20.68 1.12 HARPS

8483.61557 -18.95 0.93 HARPS

8438.56440 -14.80 4.50 CORALIE
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Figure 6. Independently constrained system parameters from the EMPEROR MCMC runs of the 31 HARPS radial-
velocities. From top to bottom we show the posteriors of the velocity amplitude, the orbital period, and the eccentricity of
the orbit. Overplotted on each histogram is a gaussian distribution with the same input parameters as those calculated from
the posterior distributions. We also show the values obtained from the distributions. The histograms reveal that the signal is
well constrained with the current data in hand, and the period in particular is in excellent agreement with that from the TESS
lightcurve.

8438.62857 -7.40 4.60 CORALIE

8438.72084 10.40 5.00 CORALIE

8439.56828 35.30 5.60 CORALIE

8439.64481 3.80 4.80 CORALIE

8439.70910 -11.70 5.20 CORALIE

8440.56824 4.90 4.70 CORALIE

8440.64498 -13.20 4.70 CORALIE

8440.70927 -27.70 5.00 CORALIE

8441.57027 -16.30 4.20 CORALIE

8441.66132 -17.50 4.60 CORALIE

8441.74898 1.00 4.50 CORALIE

8442.56932 -0.60 4.50 CORALIE

8442.64202 11.60 4.90 CORALIE

8442.70651 0.60 5.00 CORALIE

8443.57400 20.10 5.00 CORALIE

8443.64711 -0.70 4.70 CORALIE

8443.71686 5.60 4.80 CORALIE

Follow-up High-angular Resolution Imaging

NIRC2 at Keck
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Figure 7. Spectral line bisector inverse slope measurements as a function of the radial-velocities. The orange
diamonds and blue circles relate to measurements made using HARPS and Coralie, respectively. The best fit linear trend is
shown by the dashed line, and a key in the upper left indicates the origin of the data points.

As part of our standard process for validating transiting exoplanets, we observed LTT 9779 with infrared high-

resolution adaptive optics (AO) imaging at Keck Observatory (Ciardi et al. 2015). The Keck Observatory observations

were made with the NIRC2 instrument on Keck-II behind the natural guide star AO system. The observations were

made on UT 2018 Nov 22 following the standard 3-point dither pattern that is used with NIRC2 to avoid the left

lower quadrant of the detector which is typically noisier than the other three quadrants. The dither pattern step size

was 3′′ and was repeated twice, with each dither offset from the previous one by 0.5′′.

The observations were made in the narrow-band Br−γ filter (λo = 2.1686; ∆λ = 0.0326µm) with an integration time

of 2 seconds with one coadd per frame for a total of 18 seconds on target. The camera was in the narrow-angle mode

with a full field of view of ∼ 10′′ and a pixel scale of approximately 0.0099442′′ per pixel. The Keck AO observations

show no additional stellar companions were detected to within a resolution ∼ 0.056′′ FWHM (Figure 8 left).

The sensitivities of the final combined AO image were determined by injecting simulated sources azimuthally around

the primary target every 45◦ at separations of integer multiples of the central source’s FWHM (Furlan et al. 2017).

The brightness of each injected source was scaled until standard aperture photometry detected it with 5σ significance.

The resulting brightness of the injected sources relative to the target set the contrast limits at that injection location.

The final 5σ limit at each separation was determined from the average of all of the determined limits at that separation

and the uncertainty on the limit was set by the rms dispersion of the azimuthal slices at a given radial distance. The

sensitivity curve is shown in the left panel of Figure 8, along with an inset image zoomed to primary target showing

no other companion stars.

HRCam at SOAR
In addition to the Keck observations, we also searched for nearby sources to LTT 9779 with SOuthern Astrophysical

Research (SOAR) speckle imaging on 21 December 2018 UT, using the high resolution camera (HRCam) imager.

Observations were performed in the I-band, which is a similar visible bandpass to that of TESS. Observations consisted

of 400 frames, consisting of a 200×200 binned pixels region of interest, centered on the star. Each individual frame is

6.3′′ on a side, with a pixel scale of 0.01575′′ and 2×2 binning, with an observation time of ∼11 s, and using an Andor

iXon-888 camera. More details of the observations and processing are available in Ziegler et al. (2020).

The 5σ contrast curve and speckle auto-correlation function image are shown in the right panel of Figure 8. No

nearby sources were detected within 3′′of LTT 9779, down to a contrast limit of 6−7 magnitudes in the I-band. We

can also rule out brighter background blends very close to the star, down to around 0.1′′ separation. Combining the
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Figure 8. Companion sensitivity for the Keck NIRC2 adaptive optics imaging and the SOAR Adaptive Optics
Module (SAM). For NIRC2 (left), the black points represent the 5σ limits and are separated in steps of 1 FWHM (∼ 0.05′′);
the purple represents the azimuthal dispersion (1σ) of the contrast determinations (see text). The inset image is of the primary
target showing no additional companions within 3′′ of the target. For SAM (right) the black curve also represents the 5σ
limit, and the black data points mark the sampling. The inset also shows the speckle image of the star, constructed from the
Auto-Correlation Function.

results from Keck and SOAR, we can be rule out background blended eclipsing binaries contaminating the TESS

large aperture used to build the LTT 9779 light curve.

Stellar Parameters

To calculate the stellar parameters for LTT 9779 we used four different methods, with three of them applied to the

three different sets of spectra we obtained from NRES, TRES, and HARPS, and a photometric method that used

our new tool ARIADNE. For the NRES spectra, we used the combination of SpecMatch and Gaia DR2 to perform the

spectral classification, following the procedures explained in Fulton & Petigura (2018). TRES spectral observations

used the Spectral Parameter Classification (SPC; Buchhave et al. 2012) tool to calculate the stellar parameters, whereas

we used the Spectroscopic Parameters and atmosphEric ChemIstriEs of Stars (SPECIES; Soto & Jenkins 2018) and

the Zonal Atmospheric Stellar Parameters Estimator (ZASPE; Brahm et al. 2017) algorithms to analyse the HARPS

spectra. Details of these methods can be found in each of the listed publications, yet in brief, SPC and ZASPE calculate

the parameters by comparing the spectra to Kurucz synthetic model grids (Kurucz 1992), either by direct spectral

fitting, or by cross correlation. In this way, regions of the spectra that are sensitive to changes in stellar parameters

can allow parameters to be estimated by searching for the best matching spectral model.

On the other hand, SPECIES uses an automatic approach to calculate equivalent widths for large numbers of atomic

spectral lines of interest, Fe i for instance. The code then calculates the radiative transfer equation using MOOG (Sneden

1973), applying ATLAS9 model atmospheres (Castelli & Kurucz 2004), and converges on the stellar parameters using

an iterative line rejection procedure. Convergence is reached once the constraints of having no statistical trend between

abundances calculated from Fe i and Fe ii for example, reaches a pre-determined threshold value.

Each of these three methods return consistent results for the majority of the bulk parameters, in particular the

stellar effective temperature is in excellent agreement, with a mean value of 5480±42 K, along with the surface gravity
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(log g) of the star, which is found to be 4.47±0.11 dex. For the metallicity of the star, all three methods find the star

to be metal-rich, with a mean value of +0.27±0.04 dex. For the main parameters of interest in this work, the stellar

mass and radius, we used two different methods, with the mass value coming from the combination of the GAIA DR2

parallax for the star (Gaia Collaboration et al. 2016, 2018), along with either the MESA Isochrones and Stellar Tracks

(MIST; Dotter 2016) models, or the Yonsei-Yale (YY; Yi et al. 2001) isochrones, and we find a value of 1.02+0.02
−0.03 M�.

For the radius, we used the ARIADNE code (Vines & Jenkins 2020), which is a new python tool designed to automat-

ically fit stellar spectral energy distributions in a Bayesian Model Averaging framework. We convolved Phoenix v2

(Husser et al. 2013), BT-Settl, BT-Cond (Allard et al. 2012), BT-NextGen (Hauschildt et al. 1999; Allard et al. 2012),

Castelli & Kurucz (2004), and Kurucz (1993) model grids with commonly available filter bandpasses: UBVRI; 2MASS

JHKs; SDSS ugriz; ALL-WISE W1 and W2; Gaia G, RP, and BP; Pan-STARRS griwyz; Stromgren uvby; GALEX

NUV and FUV; Spitzer/IRAC 3.6µm and 4.5µm; TESS; Kepler; and NGTS creating six different model grids, which

we then interpolated in Teff−log g−[Fe/H] space. ARIADNE also fits for the radius, distance, Av and excess noise

terms for each photometry point used, in order to account for possible underestimated uncertainties. We used the

SPECIES results as priors for the Teff , log g, and [Fe/H], and the distance is constrained by the Gaia DR2 parallax,

after correcting it by the offset found by Stassun & Torres (2018). The radius has a prior based on GAIAs radius

estimate and the Av has a flat prior limited to 0.029, as per the re-calibrated SFD galaxy dust map (Schlegel et al.

1998; Schlafly & Finkbeiner 2011). We performed the fit using dynestys nested sampler (Speagle 2020), which returns

the Bayesian evidence of each model, and then afterwards we averaged each model posterior samples weighted by their

respective normalized evidence. This returned a final stellar radius of 0.949±0.006 R�.

As LTT 9779 b appears as an odd-ball when scrutinising its mass and radius, we want to be sure that the stellar

radius is not biased in the sense that the star is really an evolved star, much larger than the stellar modelling predicts,

and hence the planet is more likely a UHJ. Although we have arrived at the same values from three different analyses

and instrumental data sets, we can add more confidence to the results by studying the stellar density throughout the

MCMC modelling process, when assuming the planet’s orbit is circular. In this case, we place a log-uniform prior

on the stellar density, constrained to be within 100−10’000 kgm−3, and then study how it changes as a function of

Rp/R?.

We find that the distribution is bimodal (Figure 9), with the most likely stellar density region given by the lower,

more densely constrained part of the parameter space in the figure. The upper mode in the figure, pushing towards

higher stellar densities and lower values of Rp/R?, is arguing towards the star being an M dwarf, which is ruled out by

the high resolution spectroscopic data, and is inconsistent with our global-modelling effort (less probable part of the

posterior space). This mode is also only consistent with a very narrow set of limb-darkening coefficients, all of which

are inconsistent at several sigma with theoretical models, whereas the lower, more probable mode, has a wide range of

possible limb-darkening coefficients, which are all in agreement with theoretical models. Therefore, this test rules out

a more evolved state for the star in either case, with the higher probability mode being in excellent agreement with

the results from the stellar modelling.

Finally, for the confirmation of the transit and radial-velocity parameters it is prudent to analyse the activity of the

star, in order to assess the impact that any activity could have on the measurements. From the above analyses we

find the star to be a very slow rotator, with a HARPS v sin i limit of 1.06±0.37 km s−1, lower than the projected solar

v sin i value (1.6±0.3 km s−1) determined from HARPS spectral analysis (Pavlenko et al. 2012), indicating a slowly

rotating, and therefore inactive star. Given the calculated radius of the star, such a slow rotation gives rise to an upper

limit of the rotation period to be 45 d. If the planetary orbit is aligned with the stellar plane of rotation, such that we

can assume the inclination angle is the same, then this value is the absolute rotation period. Kepler Space Telescope

data analysis of old field stars of this spectral type, have rotation periods ranging from a few days for the youngest

stars, with a peak around 20 d, and a sharp fall after this with a tail reaching up to almost 100 d (McQuillan et al.

2014). A rotation period of 45 d would place LTT 9779 in the upper tail of the Kepler distribution, indicating the star

is old, and agreeing with the combined age estimate of 2.0+1.3
−0.9 Gyrs. This result would also suggest that the activity

of the star should be weak. We calculate the activity using the Ca ii HK lines, following the analysis procedures and

methods presented in Jenkins et al. (2006, 2008, 2011, 2017). We find the star to be inactive, with a HARPS S-index

of 0.148±0.008, which relates to a mean logR′HK,HARPS of -5.10±0.04 dex. Gyrochronology relations (Mamajek &

Hillenbrand 2008) would therefore suggest an age closer to ∼5 Gyrs or so, again confirming that the star should not

be young. Taken all together, LTT 9779 can be classed as an inactive and metal-rich solar analogue star, and all key
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Figure 9. Stellar density as a function of Rp/R? when modelling the TESS light curve with a log-uniform prior on the
stellar density and the planetary eccentricity constrained to be zero.

properties can be found in Table 1.

Global Modelling
As stated in the main text, the global modeling of the data was performed using juliet (Espinoza et al. 2019).

This code uses batman (Kreidberg 2015) to model the transit lightcurves and radvel (Fulton et al. 2018) to model

the radial-velocities. We performed the posterior sampling using MultiNest (Feroz et al. 2009) via the PyMultiNest

wrapper (Buchner et al. 2014).

The fit was parameterized by the parameters r1 and r2, both having uniform distributions between 0 and 1, which

are transformations of the planet-to-star radius ratio p and impact parameter b that allow an efficient exploration of

the parameter space (Espinoza 2018). In addition, we fitted for the stellar density by assuming a prior given by the

value obtained with our analysis of the stellar properties, assuming a normal prior for this parameter with a mean

of 1810 kg/m3 and standard deviation of 130 kg/m3. We parameterized the limb-darkening effect using a quadratic

law defined by parameters u1 and u2; however, we use an uninformative parameterization scheme (Kipping 2013) in

which we fit for q1 = (u1 + u2)2 and q2 = u1/(2u1 + 2u2) with q1 and q2 having uniform priors between 0 and 1. For

the radial-velocity parameters, we used wide priors for both the systemic radial-velocity of each instrument and the

possible jitter terms, added in quadrature to the data.

For the photometry, we considered unitary dilution factors for the TESS NGTS and LCOGT photometry after

leaving them as free parameters and observing that it was not needed based on the posterior evidence of the fits.

This is consistent with the a-priori knowledge that the only source detected by Gaia DR2 within the TESS aperture

is a couple of faint sources to the south-east of the target, the brighter of which has ∆G = 5.4 with the target. If



23

we assume the Gaia passband to be similar to the TESS passband, this would imply a dilution factor D > 0.99,

which is negligible for our purposes. For the TESS photometry, no extra noise model nor jitter term was needed to

be added according to the bayesian evidence of fits incorporating those extra terms. For the NGTS observations, we

considered the data of the target from the nine different telescopes as independent photometric datasets (i.e., having

independent out-of-transit baseline fluxes in the joint fit), that share the same limb-darkening coefficients. We initially

added photometric jitter terms to all the NGTS observations, but found that fits without them for all instruments

were preferred by looking at the bayesian evidences of both fits. For the LCOGT data, we used gaussian process in

time to detrend a smooth trend observed in the data. A kernel which was a product of an exponential and a matern

3/2 was used, and a jitter term was also fitted and added in quadrature to the reported uncertainties in the data

— this was the model that showed the largest bayesian evidence. We note that fitting the lightcurves independently

provides statistically similar transit depths to the joint model, showing that all are in statistical agreement. Finally,

an eccentric orbit is ruled out by our data with an odds ratio of 49:1 in favor of a circular orbit; the eccentric fit,

performed by parameterizing the eccentricity and argument of periastron via S1 =
√
e cosω and S2 =

√
e sinω, gives

an eccentricity given our data of e < 0.058 with a 95% credibility.

With all the photometry in hand, we could also compare individually each light curve transit model to test if they

are in statistical agreement, or any biases exist, such that the radius measurement is biased. We proceeded to again fit

each light curve independently with juliet, recording the transit model depths to test for statistical differences. As

expected, we found the TESS photometry produced the most precise value (Td,TESS = 2299+320
−240 ppm), with the LCO

and NGTS fits arriving at values of Td,LCO = 1925+620
−400 ppm and 1594+980

−715 ppm, respectively. All three are in statistical

agreement. We also jointly modeled the LCO and NGTS lightcurves to provide a more constrained comparison with

the TESS photometry, and found a value of Td,LCO+NGTS = 1678+540
−290 ppm, again in statistical agreement with the

TESS value. Therefore, we can be confident that all three instruments provide a similar description for the planet’s

physical size.

Transit Timing Variations

The Transit Timing Variations (TTVs) of LTT 9779 b was measured using the EXOFASTv2 (Eastman et al. 2013;

Eastman 2017) code. EXOFASTv2 uses the Differential Evolution Markov chain Monte Carlo method (DE-MC) to

derive the values and their uncertainties of the stellar, orbital and physical parameters of the system. For the TTV

analysis of LTT 9779 b we fixed the stellar and orbital parameters to the values obtained from the global fit performed

by SPECIES and juliet , except for the transit time of each light curve and their baseline flux.

In a Keplerian orbit, the transit time of an exoplanet follows a linear function of the transit epoch number (E):

Tc(E) = Tc(0) + PE (1)

Where P is the orbital period of the exoplanet and Tc(0) is the optimal transit time in a arbitrary zero epoch and

corresponds to the time that is least covariant with the period and has the smallest uncertainty. Our best-fitted value
from EXOFASTv2 is: Tc(0) = 2458354.2145± 0.0012 BJD.

All the transit times were allowed to move from the linear ephemeris and each one was considered as one independent

TTV parameter in the EXOFASTv2 ’s fitting, resulting in 33 parameters to fit. The best fit results are shown in Figure 10,

where the grey area corresponds to the 1σ of the linear ephemeris shown in Equation (1).

We found no evidence of a clear periodic variation in the transit time. The RMS variation from the linear ephemeris

is σ = 181.8 sec. There are only two values above the 2σ limit, if we remove them the RMS deviation is reduced to

155.9 sec. On the other hand, the reduced chi-squared is χ2
red = 1.23, which is an indicator that the transit times fit

accordingly with the proposed linear ephemeris.

In conclusion, the existence of transit timing variations in LTT 9779 b is not evident for the time-span of our transit

data. In addition, with the apparent lack of another short period signal in the RV data, this suggest that there is no

other inner companion in the planetary system. Any other tertiary companion must be far from LTT 9779 b, such

that the gravitation or tidal interactions are small, and the linear trend in the RVs might be pointing in that direction.

Metallicity Analysis

The correlation between the presence of giant planets and host star metallicity has been well established (Gonzalez

1997; Fischer & Valenti 2005; Jenkins et al. 2017; Maldonado et al. 2018), along with the apparent lack of any correlation

for smaller planets (Jenkins et al. 2013; Buchhave et al. 2012, 2014). We studied the small sample of known USP
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Figure 10. Observed minus computed mid-transit times of LTT9779 b. The residuals (TTV) of the transit times
are shown considering the proposed linear ephemeris. The dashed line corresponds to zero variation and the grey area is the
propagation of 1σ uncertainties, considering the optimal transit time from EXOFASTv2 and the period from juliet . The epoch
0 is the first light curve obtained by TESS and is also the corresponding epoch of the optimal transit time. The TTV values
shown in this plot fit accordingly with the proposed linear ephemeris (χ2

red = 1.23).

planets and Ultra Hot Jupiters (UHJs, the gas giant planets with orbit periods of less than 1 day), using values taken

from the TEPCat database (Southworth 2011), whilst recalculating metallicities for those where we could find their

spectra, (∼half the sample), using SPECIES (Soto & Jenkins). We found a similar general trend, whereby the USP

planets tend to orbit more metal-poor stars when compared with the UHJs, however the sample is small enough that

single outliers bias the statistics, therefore we extended slightly the orbital period selection out to 1.3 days, increasing

the sample by over 55%. With this updated sample, we find a Kolmogorov-Smirnov (KS) test probability of only 1%

that the USP planets and UHJs are drawn from the same parent population.

A couple of notable exceptions to the trend here are the planets 55 Cancri e and WASP-47 e, both small USP planets

that orbit very metal-rich stars. However, there exists additional gas giant planets in these systems, meaning they

still follow the overall picture. If we exclude these two, the KS probability drops to 0.1% that the populations are

statistically similar. The diversity of USP planets is high, therefore many more detections are needed to statistically

constrain the populations in this respect. We also require more UHJs to build up a statistical sample, since the subsolar

metallicity of WASP-43 can also bias the tests. If we look at the density-metallicity parameter space (Figure 4), there

are indications of a general trend whereby the low-density planets are mostly UHJs orbiting metal-rich stars, and the

higher density USP planets orbit more metal-poor stars.

3.7. Data availability

Photometric data that support the findings of this study are publically available from the Mikulski Archive for Space

Telescopes (MAST; http://archive.stsci.edu/) under the TESS Mission link. All radial-velocity data re available from

the corresponding author upon reasonable request. Raw and processed spectra can be obtained from the European

Southern Observatorys data archive at http://archive.eso.org.

3.8. Code Availability

All codes necessary for the reproduction of this work are publically available through the GitHub repository, as

follows:
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EMPEROR: https://github.com/ReddTea/astroEMPEROR

Juliet: https://github.com/nespinoza/juliet

SPECIES: https://github.com/msotov/SPECIES

ARIADNE: https://www.github.com/jvines/astroARIADNE

CERES: https://github.com/rabrahm/ceres

ZASPE https://github.com/rabrahm/zaspe
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