37 research outputs found

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Apo-dystrophin-3: a 2.2kb transcript from the DMD locus encoding the dystrophin glycoprotein binding site

    No full text
    The molecular defect in Duchenne muscular dystrophy is well established as being due to mutations at Xp21 which disrupt the normal synthesis of the 14kb dystrophin mRNA. More recently, several groups have identified a 4.8kb transcript from this locus which shares exons with the carboxy-terminal region of the dystrophin gene. In this paper we present evidence for an additional 2.2kb mRNA transcript. The 5' untranslated region and first 7 amino acids are identical to that published for the 4.8kb transcript. The position of the translational stop codon and 3' untranslated region is similar to that previously described as the truncated fetal dystrophin isoform. This 2.2kb mRNA has a similar tissue distribution to that described for the 4.8kb mRNA but unlike the other transcripts from the DMD locus, the 2.2kb mRNA is expressed in early development. The relevance of this transcript in the clinical expression of muscular dystrophy and developmental delay is discusse

    The emerging family of dystrophin-related proteins

    No full text
    Duchenne and Becker muscular dystrophies are caused by mutations in the gene encoding dystrophin, a component of the subsarcolemmal cytoskeleton. Dystrophin-related proteins are identical or homologous to the cysteine-rich and C-terminal domains of dystrophin. This part of dystrophin binds to a membrane-spanning glycoprotein complex in muscle. At least five dystrophin-related proteins are encoded by the Duchenne muscular dystrophy locus. These proteins are found in many non-muscle tissues where dystrophin is not expressed and they are thought to be membrane-associated. Two other dystrophin-related proteins-utrophin and an 87 kDa postsynaptic protein - are encoded by separate loci and, like dystrophin, they are components of the neuromuscular junction

    Utrophin: a structural and functional comparison to dystrophin

    No full text
    Utrophin is an autosomally-encoded homologue of dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene. Although, Utrophin is very similar in sequence to dystrophin and possesses many of the protein-binding properties ascribed to dystrophin, both proteins are expressed in an apparently reciprocal manner and may be coordinately regulated. In normal skeletal muscle, Utrophin is found at the neuromuscular junction (NMJ) whereas dystrophin predominates at the sarcolemma. However, during development, and in some myopathies including DMD, utrophin is also found at the sarcolemma. This re-distribution is often associated with a significant increase in the levels of utrophin. At the NMJ utrophin co-localizes with the acetylcholine receptors (AChR) and may play a role in the stabilization of the synaptic cytoskeleton. Because utrophin and dystrophin are so similar, utrophin may be able to replace dystrophin in dystrophin deficient muscle. This review compares the structure and function of utrophin to dystrophin and discusses the rationale behind the use of utrophin as a potential therapeutic agent

    Increasing complexity of the dystrophin-associated protein complex

    No full text
    Duchenne muscular dystrophy is a severe X chromosome-linked, muscle-wasting disease caused by lack of the protein dystrophin. The exact function of dystrophin rem to be determined. However, analysis of its interaction with a large oligomeric protein complex at the sarcolemma and the identicaton of a structurally related protein, utrophin, is leading to the characterization of candidate genes for other neuromuscular disorders
    corecore