12 research outputs found
Validity of Inertial Measurement Units to Measure Lower-Limb Kinematics and Pelvic Orientation at Submaximal and Maximal Effort Running Speeds
Inertial measurement units (IMUs) have been validated for measuring sagittal plane lower-limb kinematics during moderate-speed running, but their accuracy at maximal speeds remains less understood. This study aimed to assess IMU measurement accuracy during high-speed running and maximal effort sprinting on a curved non-motorized treadmill using discrete (BlandâAltman analysis) and continuous (root mean square error [RMSE], normalised RMSE, Pearson correlation, and statistical parametric mapping analysis [SPM]) metrics. The hip, knee, and ankle flexions and the pelvic orientation (tilt, obliquity, and rotation) were captured concurrently from both IMU and optical motion capture systems, as 20 participants ran steadily at 70%, 80%, 90%, and 100% of their maximal effort sprinting speed (5.36 ± 0.55, 6.02 ± 0.60, 6.66 ± 0.71, and 7.09 ± 0.73 m/s, respectively). BlandâAltman analysis indicated a systematic bias within ±1° for the peak pelvic tilt, rotation, and lower-limb kinematics and â3.3° to â4.1° for the pelvic obliquity. The SPM analysis demonstrated a good agreement in the hip and knee flexion angles for most phases of the stride cycle, albeit with significant differences noted around the ipsilateral toe-off. The RMSE ranged from 4.3° (pelvic obliquity at 70% speed) to 7.8° (hip flexion at 100% speed). Correlation coefficients ranged from 0.44 (pelvic tilt at 90%) to 0.99 (hip and knee flexions at all speeds). Running speed minimally but significantly affected the RMSE for the hip and ankle flexions. The present IMU system is effective for measuring lower-limb kinematics during sprinting, but the pelvic orientation estimation was less accurate
The development of a HAMstring InjuRy (HAMIR) index to mitigate injury risk through innovative imaging, biomechanics, and data analytics : Protocol for an observational cohort study
Background
The etiology of hamstring strain injury (HSI) in American football is multi-factorial and understanding these risk factors is paramount to developing predictive models and guiding prevention and rehabilitation strategies. Many player-games are lost due to the lack of a clear understanding of risk factors and the absence of effective methods to minimize re-injury. This paper describes the protocol that will be followed to develop the HAMstring InjuRy (HAMIR) index risk prediction models for HSI and re-injury based on morphological, architectural, biomechanical and clinical factors in National Collegiate Athletic Association Division I collegiate football players.
Methods
A 3-year, prospective study will be conducted involving collegiate football student-athletes at four institutions. Enrolled participants will complete preseason assessments of eccentric hamstring strength, on-field sprinting biomechanics and muscleâtendon volumes using magnetic-resonance imaging (MRI). Athletic trainers will monitor injuries and exposure for the duration of the study. Participants who sustain an HSI will undergo a clinical assessment at the time of injury along with MRI examinations. Following completion of structured rehabilitation and return to unrestricted sport participation, clinical assessments, MRI examinations and sprinting biomechanics will be repeated. Injury recurrence will be monitored through a 6-month follow-up period. HAMIR index prediction models for index HSI injury and re-injury will be constructed.
Discussion
The most appropriate strategies for reducing risk of HSI are likely multi-factorial and depend on risk factors unique to each athlete. This study will be the largest-of-its-kind (1200 player-years) to gather detailed information on index and recurrent HSI, and will be the first study to simultaneously investigate the effect of morphological, biomechanical and clinical variables on risk of HSI in collegiate football athletes. The quantitative HAMIR index will be formulated to identify an athleteâs propensity for HSI, and more importantly, identify targets for injury mitigation, thereby reducing the global burden of HSI in high-level American football players.
Trial Registration The trial is prospectively registered on ClinicalTrials.gov (NCT05343052; April 22, 2022)
Expert recommendations on the assessment of wall shear stress in human coronary arteries : existing methodologies, technical considerations, and clinical applications
The aim of this manuscript is to provide guidelines for appropriate use of CFD to obtain reproducible and reliable wall shear stress maps in native and instrumented human coronary arteries. The outcome of CFD heavily depends on the quality of the input data, which include vessel geometrical data, proper boundary conditions, and material models. Available methodologies to reconstruct coronary artery anatomy are discussed in âImaging coronary arteries: a brief reviewâ section. Computational procedures implemented to simulate blood flow in native coronary arteries are presented in âWall shear stress in native arteriesâ section. The effect of including different geometrical scales due to the presence of stent struts in instrumented arteries is highlighted in âWall shear stress in stentsâ section. The clinical implications are discussed in âClinical applicationsâ section, and concluding remarks are presented in âConcluding remarksâ section
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; pâ=â0.40). There was no significant effect of DMF on any secondary outcome
Intestinal ABCA1 directly contributes to HDL biogenesis in vivo
Plasma HDL cholesterol levels are inversely related to risk for atherosclerosis. The ATP-binding cassette, subfamily A, member 1 (ABCA1) mediates the rate-controlling step in HDL particle formation, the assembly of free cholesterol and phospholipids with apoA-I. ABCA1 is expressed in many tissues; however, the physiological functions of ABCA1 in specific tissues and organs are still elusive. The liver is known to be the major source of plasma HDL, but it is likely that there are other important sites of HDL biogenesis. To assess the contribution of intestinal ABCA1 to plasma HDL levels in vivo, we generated mice that specifically lack ABCA1 in the intestine. Our results indicate that approximately 30% of the steady-state plasma HDL pool is contributed by intestinal ABCA1 in mice. In addition, our data suggest that HDL derived from intestinal ABCA1 is secreted directly into the circulation and that HDL in lymph is predominantly derived from the plasma compartment. These data establish a critical role for intestinal ABCA1 in plasma HDL biogenesis in vivo