911 research outputs found

    Analysis and prediction of 5-year survival in patients with cutaneous melanoma: a model-based period analysis

    Get PDF
    BackgroundThe survival and prognosis of patients are significantly threatened by cutaneous melanoma (CM), which is a highly aggressive disease. It is therefore crucial to determine the most recent survival rate of CM. This study used population-based cancer registry data to examine the 5-year relative survival rate of CM in the US.MethodsPeriod analysis was used to assess the relative survival rate and trends of patients with CM in the Surveillance, Epidemiology, and End Results (SEER) database during 2004–2018. And based on the data stratified by age, gender, race and subtype in the SEER database, a generalized linear model was 12established to predict the 5-year relative survival rate of CM patients from 2019 to 2023.ResultsThe 5-year relative survival increased to various degrees for both total CM and CM subtypes during the observation period. The improvement was greatest for amelanotic melanoma, increasing from 69.0% to 81.5%. The 5-year overall relative survival rates of CM were 92.9%, 93.5%, and 95.6% for 2004–2008, 2009–2013, and 2014–2018, respectively. Females had a marginally higher survival rate than males for almost all subtypes, older people had lower survival rates than younger people, white patients had higher survival rates than nonwhite ones, and urban locations had higher rates of survival from CM than rural locations did. The survival rate of CM was significantly lower for distant metastasis.ConclusionThe survival rate of patients with CM gradually improved overall during 2004–2018. With the predicted survival rate of 96.7% for 2019–2023, this trend will still be present. Assessing the changes experienced by patients with CM over the previous 15 years can help in predicting the future course of CM. It also provides a scientific foundation that associated departments can use to develop efficient tumor prevention and control strategies

    Integrated analysis identifies a class of androgen-responsive genes regulated by short combinatorial long-range mechanism facilitated by CTCF

    Get PDF
    Recently, much attention has been given to elucidate how long-range gene regulation comes into play and how histone modifications and distal transcription factor binding contribute toward this mechanism. Androgen receptor (AR), a key regulator of prostate cancer, has been shown to regulate its target genes via distal enhancers, leading to the hypothesis of global long-range gene regulation. However, despite numerous flows of newly generated data, the precise mechanism with respect to AR-mediated long-range gene regulation is still largely unknown. In this study, we carried out an integrated analysis combining several types of high-throughput data, including genome-wide distribution data of H3K4 di-methylation (H3K4me2), CCCTC binding factor (CTCF), AR and FoxA1 cistrome data as well as androgen-regulated gene expression data. We found that a subset of androgen-responsive genes was significantly enriched near AR/H3K4me2 overlapping regions and FoxA1 binding sites within the same CTCF block. Importantly, genes in this class were enriched in cancer-related pathways and were downregulated in clinical metastatic versus localized prostate cancer. Our results suggest a relatively short combinatorial long-range regulation mechanism facilitated by CTCF blocking. Under such a mechanism, H3K4me2, AR and FoxA1 within the same CTCF block combinatorially regulate a subset of distally located androgen-responsive genes involved in prostate carcinogenesis

    Tamoxifen resistance in breast cancer is regulated by the EZH2–ERa–GREB1 transcriptional axis

    Get PDF
    Resistance to cancer treatment can be driven by epigenetic reprogramming of specific transcriptomes in favor of the refractory phenotypes. Here we discover that tamoxifen resistance in breast cancer is driven by a regulatory axis consisting of a master transcription factor, its cofactor, and an epigenetic regulator. The oncogenic histone methyltransferase EZH2 conferred tamoxifen resistance by silencing the expression of the estrogen receptor a (ERa) cofactor GREB1. In clinical specimens, induction of DNA methylation of a particular CpG-enriched region at the GREB1 promoter negatively correlated with GREB1 levels and cell sensitivity to endocrine agents. GREB1 also ensured proper cellular reactions to different ligands by recruiting distinct sets of ERa cofactors to cis-regulatory elements, which explains the contradictory biological effects of GREB1 on breast cancer cell growth in response to estrogen or antiestrogen. In refractory cells, EZH2-dependent repression of GREB1 triggered chromatin reallocation of ERa coregulators, converting the antiestrogen into an agonist. In clinical specimens from patients receiving adjuvant tamoxifen treatment, expression levels of EZH2 and GREB1 were correlated negatively, and taken together better predicted patient responses to endocrine therapy. Overall, our work suggests a new strategy to overcome endocrine resistance in metastatic breast cancer by targeting a particular epigenetic program. Significance: This study suggests a new strategy to overcome endocrine resistance in metastatic breast cancer by targeting a particular epigenetic program defined within.Fil: Wu, Yanming. University of Texas at San Antonio; Estados UnidosFil: Zhang, Zhao. University of Texas at San Antonio; Estados UnidosFil: Cenciarini, Mauro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Proietti Anastasi, Cecilia Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Amasino, Matías Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Hong, Tao. University of Texas at San Antonio; Estados Unidos. Central South University; ChinaFil: Yang, Mei. University of Texas at San Antonio; Estados UnidosFil: Liao, Yiji. University of Texas at San Antonio; Estados UnidosFil: Chiang, Huai-Chin. University of Texas at San Antonio; Estados Unidos. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio;Fil: Kaklamani, Virginia G.. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio;Fil: Jeselsohn, Rinath. Dana-farber Cancer Institute; Estados UnidosFil: Vadlamudi, Ratna K.. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio;Fil: Huang, Tim Hui Ming. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio;Fil: Li, Rong. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio;Fil: De Angelis, Carmine. Baylor College Of Medicine; Estados UnidosFil: Fu, Xiaoyong. Baylor College Of Medicine; Estados UnidosFil: Elizalde, Patricia Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Schiff, Rachel. Baylor College Of Medicine; Estados UnidosFil: Brown, Myles. Dana farber Cancer Institute; Estados UnidosFil: Xu, Kexin. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio

    Hypomethylation and aberrant expression of the glioma pathogenesis-related 1 gene in Wilms tumors

    Get PDF
    Wilms tumors (WTs) have a complex etiology, displaying genetic and epigenetic changes, including loss of imprinting (LOI) and tumor suppressor gene silencing. To identify new regions of epigenetic perturbation in WTs, we screened kidney and tumor DNA using CpG island (CGI) tags associated with cancer-specific DNA methylation changes. One such tag corresponded to a paralog of the glioma pathogenesis-related 1/related to testis-specific, vespid, and pathogenesis proteins 1 (GLIPR1/RTVP-1) gene, previously reported to be a tumor-suppressor gene silenced by hypermethylation in prostate cancer. Here we report methylation analysis of the GLIPR1/RTVP-1 gene in WTs and normal fetal and pediatric kidneys. Hypomethylation of the GLIPR1/RTVP-1 5′-region in WTs relative to normal tissue is observed in 21/24 (87.5%) of WTs analyzed. Quantitative analysis of GLIPR1/RTVP-1 expression in 24 WTs showed elevated transcript levels in 16/24 WTs (67%), with 12 WTs displaying in excess of 20-fold overexpression relative to fetal kidney (FK) control samples. Immunohistochemical analysis of FK and WT corroborates the RNA expression data and reveals high GLIPR1/RTVP-1 in WT blastemal cells together with variable levels in stromal and epithelial components. Hypomethylation is also evident in the WT precursor lesions and nephrogenic rests (NRs), supporting a role for GLIPR1/RTVP-1 deregulation early in Wilms tumorigenesis. Our data show that, in addition to gene dosage changes arising from LOI and hypermethylation-induced gene silencing, gene activation resulting from hypomethylation is also prevalent in WTs. Copyright © 2007 Neoplasia Press, Inc. All rights reserved

    An empirical Bayes model for gene expression and methylation profiles in antiestrogen resistant breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nuclear transcription factor estrogen receptor alpha (ER-alpha) is the target of several antiestrogen therapeutic agents for breast cancer. However, many ER-alpha positive patients do not respond to these treatments from the beginning, or stop responding after being treated for a period of time. Because of the association of gene transcription alteration and drug resistance and the emerging evidence on the role of DNA methylation on transcription regulation, understanding of these relationships can facilitate development of approaches to re-sensitize breast cancer cells to treatment by restoring DNA methylation patterns.</p> <p>Methods</p> <p>We constructed a hierarchical empirical Bayes model to investigate the simultaneous change of gene expression and promoter DNA methylation profiles among wild type (WT) and OHT/ICI resistant MCF7 breast cancer cell lines.</p> <p>Results</p> <p>We found that compared with the WT cell lines, almost all of the genes in OHT or ICI resistant cell lines either do not show methylation change or hypomethylated. Moreover, the correlations between gene expression and methylation are quite heterogeneous across genes, suggesting the involvement of other factors in regulating transcription. Analysis of our results in combination with H3K4me2 data on OHT resistant cell lines suggests a clear interplay between DNA methylation and H3K4me2 in the regulation of gene expression. For hypomethylated genes with alteration of gene expression, most (~80%) are up-regulated, consistent with current view on the relationship between promoter methylation and gene expression.</p> <p>Conclusions</p> <p>We developed an empirical Bayes model to study the association between DNA methylation in the promoter region and gene expression. Our approach generates both global (across all genes) and local (individual gene) views of the interplay. It provides important insight on future effort to develop therapeutic agent to re-sensitize breast cancer cells to treatment.</p

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
    corecore