65 research outputs found

    Targeting the Canonical Nuclear Factor-ÎşB Pathway with a High-Potency IKK2 Inhibitor Improves Outcomes in a Mouse Model of Idiopathic Pneumonia Syndrome

    Get PDF
    Idiopathic pneumonia syndrome (IPS) is a noninfectious inflammatory disorder of the lungs that occurs most often after fully myeloablative allogeneic hematopoietic stem cell transplantation (HSCT). IPS can be severe and is associated with high 1-year mortality rates despite existing therapies. The canonical nuclear factor-(NF) κB signaling pathway has previously been linked to several inflammatory disorders of the lung, including asthma and lung allograft rejection. It has never been specifically targeted as a novel IPS treatment approach, however. Here, we report that the IκB kinase 2 (IKK2) antagonist BAY 65-5811 or “compound A,” a highly potent and specific inhibitor of the NF-κB pathway, was able to improve median survival times and recipient oxygenation in a well-described mouse model of IPS. Compound A impaired the production of the proinflammatory chemokines CCL2 and CCL5 within the host lung after transplantation. This resulted in significantly lower numbers of donor lung infiltrating CD4+ and CD8+ T cells and reduced pulmonary inflammatory cytokine production after allograft. Compound A's beneficial effects appeared to be specific for limiting pulmonary injury, as the drug was unable to improve outcomes in a B6 into B6D2 haplotype-matched murine HSCT model in which recipient mice succumb to lethal acute graft-versus-host disease of the gastrointestinal tract. Collectively, our data suggest that the targeting of the canonical NF-κB pathway with a small molecule IKK2 antagonist may represent an effective and novel therapy for the specific management of acute lung injury that can occur after allogeneic HSCT

    Angular dependence of the bulk nucleation field Hc2 of aligned MgB2 crystallites

    Full text link
    Studies on the new MgB2 superconductor, with a critical temperature Tc ~ 39 K, have evidenced its potential for applications although intense magnetic relaxation effects limit the critical current density, Jc, at high magnetic fields. This means that effective pinning centers must be added into the material microstructure, in order to halt dissipative flux movements. Concerning the basic microscopic mechanism to explain the superconductivity in MgB2, several experimental and theoretical works have pointed to the relevance of a phonon-mediated interaction, in the framework of the BCS theory. Questions have been raised about the relevant phonon modes, and the gap and Fermi surface anisotropies, in an effort to interpret spectroscopic and thermal data that give values between 2.4 and 4.5 for the gap energy ratio. Preliminary results on the anisotropy of Hc2 have shown a ratio, between the in-plane and perpendicular directions, around 1.7 for aligned MgB2 crystallites and 1.8 for epitaxial thin films. Here we show a study on the angular dependence of Hc2 pointing to a Fermi velocity anisotropy around 2.5. This anisotropy certainly implies the use of texturization techniques to optimize Jc in MgB2 wires and other polycrystalline components.Comment: 10 pages + 4 Figs.; Revised version accepted in Phys. Rev.

    Mast cell deficiency limits the development of chronic rhinosinusitis in mice

    Get PDF
    Background: Chronic rhinosinusitis (CRS) is one of the most common chronic diseases in adults in both developing and developed countries. The etiology and pathogenesis of CRS remain poorly understood, and the disease is refractory to therapy in many patients. Mast cell activation has been demonstrated in the sinonasal mucosa of patients with CRS; however, the specific contribution of mast cells to the development and pathogenesis of this disease has not been established. Objective: The objective of this study was to investigate the role of mast cells in the development of CRS. Methods: C57BL/6 wild-type and C57BL/6-KitW-sh/W-sh mast cell-deficient mice were immunized by intraperitoneal allergen injection and subsequent chronic low dose intranasal allergen challenges. The sinonasal phenotypes of these groups were then evaluated and compared to saline-treated controls using radiologic, histologic, and immunologic methods. Results: Wild-type mice exposed to chronic intranasal allergen developed many features seen in human CRS, including mucosal thickening, cystic changes, polyp development, eosinophilia, goblet cell hyperplasia, and mast cell activation. In contrast, sinonasal pathology was significantly attenuated in mast cell-deficient mice subjected to the same chronic allergen protocol. Specifically, tissue eosinophilia and goblet cell hyperplasia were reduced by approximately 50% compared to wild-type levels. Surprisingly, none of the mast cell-deficient mice subjected to chronic allergen challenge developed cystic changes or polypoid changes in the nose or sinuses. Conclusions: These data identify a critical role for mast cells in the development of many features of a mouse model of eosinophilic CRS, suggesting that therapeutic strategies targeting mast cells be examined in humans afflicted with this disease

    Neuropilin-2 regulates airway inflammatory responses to inhaled lipopolysaccharide

    Get PDF
    Neuropilins are multifunctional receptors that play important roles in immune regulation. Neuropilin-2 (NRP2) is expressed in the lungs, but whether it regulates airway immune responses is unknown. Here, we report that Nrp2 is weakly expressed by alveolar macrophages (AMs) in the steady state but is dramatically upregulated following in vivo lipopolysaccharide (LPS) inhalation. Ex vivo treatment of human AMs with LPS also increased NRP2 mRNA expression and cell-surface display of NRP2 protein. LPS-induced Nrp2 expression in AMs was dependent upon the myeloid differentiation primary response 88 signaling pathway and the transcription factor NF-ÎşB. In addition to upregulating display of NRP2 on the cell membrane, inhaled LPS also triggered AMs to release soluble NRP2 into the airways. Finally, myeloid-specific ablation of NRP2 resulted in increased expression of the chemokine (C-C motif) ligand 2 (Ccl2) in the lungs and prolonged leukocyte infiltration in the airways following LPS inhalation. These findings suggest that NRP2 expression by AMs regulates LPS-induced inflammatory cell recruitment to the airways and reveal a novel role for NRP2 during innate immune responses in the lungs

    Development of chronic bronchitis and emphysema in β-epithelial Na+ channel-overexpressing mice

    Get PDF
    Rationale: Chronic obstructive pulmonary disease is a leading cause of death worldwide, but its pathogenesis is not well understood. Previous studies have shown that airway surface dehydration in β-epithelial Na+ channel (βENaC)-overexpressing mice caused a chronic lung disease with high neonatal pulmonary mortality and chronic bronchitis in adult survivors. Objectives: The aim of this study was to identify the initiating lesions and investigate the natural progression of lung disease caused by airway surface dehydration. Methods: Lung morphology, gene expression, bronchoalveolar lavage, and lung mechanics were studied at different ages in βENaC-overexpressing mice. Measurements and Main Results: Mucus obstruction in βENaC- overexpressing mice originated in the trachea in the first days of life and was associated with hypoxia, airway epithelial necrosis, and death. In surviving βENaC-overexpressing mice, mucus obstruction extended into the lungs and was accompanied by goblet cell metaplasia, increased mucin expression, and airway inflammation with transient perinatal increases in tumor necrosis factor-α and macrophages, IL-13 and eosinophils, and persistent increases inkeratinocyte-derived cytokine (KC), neutrophils, and chitinases in the lung. βENaC-overexpressing mice also developed emphysema with increased lung volumes, distal airspace enlargement, and increased lung compliance. Conclusions: Our studies demonstrate that airway surface dehydration is sufficient toinitiatepersistentneutrophilic airway inflammation with chronic airways mucus obstruction and to cause transient eosinophilic airway inflammation and emphysema. These results suggest that deficient airway surface hydration may play a critical role in the pathogenesis of chronic obstructive pulmonary diseases of different etiologies and serve as a target for novel therapies

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Effects of sleep disturbance on dyspnoea and impaired lung function following hospital admission due to COVID-19 in the UK: a prospective multicentre cohort study

    Get PDF
    Background: Sleep disturbance is common following hospital admission both for COVID-19 and other causes. The clinical associations of this for recovery after hospital admission are poorly understood despite sleep disturbance contributing to morbidity in other scenarios. We aimed to investigate the prevalence and nature of sleep disturbance after discharge following hospital admission for COVID-19 and to assess whether this was associated with dyspnoea. Methods: CircCOVID was a prospective multicentre cohort substudy designed to investigate the effects of circadian disruption and sleep disturbance on recovery after COVID-19 in a cohort of participants aged 18 years or older, admitted to hospital for COVID-19 in the UK, and discharged between March, 2020, and October, 2021. Participants were recruited from the Post-hospitalisation COVID-19 study (PHOSP-COVID). Follow-up data were collected at two timepoints: an early time point 2–7 months after hospital discharge and a later time point 10–14 months after hospital discharge. Sleep quality was assessed subjectively using the Pittsburgh Sleep Quality Index questionnaire and a numerical rating scale. Sleep quality was also assessed with an accelerometer worn on the wrist (actigraphy) for 14 days. Participants were also clinically phenotyped, including assessment of symptoms (ie, anxiety [Generalised Anxiety Disorder 7-item scale questionnaire], muscle function [SARC-F questionnaire], dyspnoea [Dyspnoea-12 questionnaire] and measurement of lung function), at the early timepoint after discharge. Actigraphy results were also compared to a matched UK Biobank cohort (non-hospitalised individuals and recently hospitalised individuals). Multivariable linear regression was used to define associations of sleep disturbance with the primary outcome of breathlessness and the other clinical symptoms. PHOSP-COVID is registered on the ISRCTN Registry (ISRCTN10980107). Findings: 2320 of 2468 participants in the PHOSP-COVID study attended an early timepoint research visit a median of 5 months (IQR 4–6) following discharge from 83 hospitals in the UK. Data for sleep quality were assessed by subjective measures (the Pittsburgh Sleep Quality Index questionnaire and the numerical rating scale) for 638 participants at the early time point. Sleep quality was also assessed using device-based measures (actigraphy) a median of 7 months (IQR 5–8 months) after discharge from hospital for 729 participants. After discharge from hospital, the majority (396 [62%] of 638) of participants who had been admitted to hospital for COVID-19 reported poor sleep quality in response to the Pittsburgh Sleep Quality Index questionnaire. A comparable proportion (338 [53%] of 638) of participants felt their sleep quality had deteriorated following discharge after COVID-19 admission, as assessed by the numerical rating scale. Device-based measurements were compared to an age-matched, sex-matched, BMI-matched, and time from discharge-matched UK Biobank cohort who had recently been admitted to hospital. Compared to the recently hospitalised matched UK Biobank cohort, participants in our study slept on average 65 min (95% CI 59 to 71) longer, had a lower sleep regularity index (–19%; 95% CI –20 to –16), and a lower sleep efficiency (3·83 percentage points; 95% CI 3·40 to 4·26). Similar results were obtained when comparisons were made with the non-hospitalised UK Biobank cohort. Overall sleep quality (unadjusted effect estimate 3·94; 95% CI 2·78 to 5·10), deterioration in sleep quality following hospital admission (3·00; 1·82 to 4·28), and sleep regularity (4·38; 2·10 to 6·65) were associated with higher dyspnoea scores. Poor sleep quality, deterioration in sleep quality, and sleep regularity were also associated with impaired lung function, as assessed by forced vital capacity. Depending on the sleep metric, anxiety mediated 18–39% of the effect of sleep disturbance on dyspnoea, while muscle weakness mediated 27–41% of this effect. Interpretation: Sleep disturbance following hospital admission for COVID-19 is associated with dyspnoea, anxiety, and muscle weakness. Due to the association with multiple symptoms, targeting sleep disturbance might be beneficial in treating the post-COVID-19 condition. Funding: UK Research and Innovation, National Institute for Health Research, and Engineering and Physical Sciences Research Council

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials
    • …
    corecore