16 research outputs found

    Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK

    Get PDF
    The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the hostÂŽs cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that processFil: Salinas Ojeda, Romina Paola. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ortiz Flores, Rodolfo Matias. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Distel, JesĂșs SebastiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Aguilera, Milton Osmar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Beron, Walter. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; Argentin

    Divergent Roles of Salmonella Pathogenicity Island 2 and Metabolic Traits during Interaction of S. enterica Serovar Typhimurium with Host Cells

    Get PDF
    The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium) with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied

    HTLV-1 infection in solid organ transplant donors and recipients in Spain

    Get PDF
    Background: HTLV-1 infection is a neglected disease, despite infecting 10–15 million people worldwide and severe illnesses develop in 10% of carriers lifelong. Acknowledging a greater risk for developing HTLV-1 associated illnesses due to immunosuppression, screening is being widely considered in the transplantation setting. Herein, we report the experience with universal HTLV testing of donors and recipients of solid organ transplants in a survey conducted in Spain. Methods: All hospitals belonging to the Spanish HTLV network were invited to participate in the study. Briefly, HTLV antibody screening was performed retrospectively in all specimens collected from solid organ donors and recipients attended since the year 2008. Results: A total of 5751 individuals were tested for HTLV antibodies at 8 sites. Donors represented 2312 (42.2%), of whom 17 (0.3%) were living kidney donors. The remaining 3439 (59.8%) were recipients. Spaniards represented nearly 80%. Overall, 9 individuals (0.16%) were initially reactive for HTLV antibodies. Six were donors and 3 were recipients. Using confirmatory tests, HTLV-1 could be confirmed in only two donors, one Spaniard and another from Colombia. Both kidneys of the Spaniard were inadvertently transplanted. Subacute myelopathy developed within 1 year in one recipient. The second recipient seroconverted for HTLV-1 but the kidney had to be removed soon due to rejection. Immunosuppression was stopped and 3 years later the patient remains in dialysis but otherwise asymptomatic. Conclusion: The rate of HTLV-1 is low but not negligible in donors/recipients of solid organ transplants in Spain. Universal HTLV screening should be recommended in all donor and recipients of solid organ transplantation in Spain. Evidence is overwhelming for very high virus transmission and increased risk along with the rapid development of subacute myelopath

    Salmonella enterica serovar Choleraesuis derivatives harbouring deletions in rpoS and phoP regulatory genes are attenuated in pigs, and survive and multiply in porcine intestinal macrophages and fibroblasts, respectively.

    No full text
    Live attenuated Salmonella enterica strains have been extensively studied as potential vectors for the oral delivery of heterologous antigens. Due to its ability to target immune cells, its specific mechanism for crossing the intestinal barrier, and its swine-restricted tropism, S. enterica subspecies enterica serovar Choleraesuis (S. Choleraesuis) has attracted a great deal of interest for the production of bacterial-based oral carriers specifically adapted to swine. In this study, two mutants of S. Choleraesuis were constructed and their attenuation and intracellular fate analysed with the purpose of engineering new attenuated live strains with improved properties as oral vaccine carriers. Those strains harboured a specific deletion either within the phoP or rpoS genes, which encode virulence-related regulators in S. Typhimurium. In comparison to the wild-type parental S. Choleraesuis, the mutant strains, especially DeltaphoP, were extremely low in virulence in the murine model and in the natural host, the pig. Moreover, when compared with a commercial live vaccine strain, SC-54, the two mutants showed a higher level of attenuation in mice and DeltaphoP also in pigs. In addition, DeltarpoS and DeltaphoP presented a proliferation and survival phenotype within swine intestinal primary fibroblast and macrophage cell cultures, respectively. Collectively, the present results indicate that the DeltarpoS and DeltaphoP strains of S. Choleraesuis gather adequate features to be potential candidates for vaccine vectors for the specific delivery of heterologous antigens adapted to pigs

    Salmonella enterica serovar Choleraesuis derivatives harbouring deletions in rpoS and phoP regulatory genes are attenuated in pigs, and survive and multiply in porcine intestinal macrophages and fibroblasts, respectively.

    No full text
    Live attenuated Salmonella enterica strains have been extensively studied as potential vectors for the oral delivery of heterologous antigens. Due to its ability to target immune cells, its specific mechanism for crossing the intestinal barrier, and its swine-restricted tropism, S. enterica subspecies enterica serovar Choleraesuis (S. Choleraesuis) has attracted a great deal of interest for the production of bacterial-based oral carriers specifically adapted to swine. In this study, two mutants of S. Choleraesuis were constructed and their attenuation and intracellular fate analysed with the purpose of engineering new attenuated live strains with improved properties as oral vaccine carriers. Those strains harboured a specific deletion either within the phoP or rpoS genes, which encode virulence-related regulators in S. Typhimurium. In comparison to the wild-type parental S. Choleraesuis, the mutant strains, especially DeltaphoP, were extremely low in virulence in the murine model and in the natural host, the pig. Moreover, when compared with a commercial live vaccine strain, SC-54, the two mutants showed a higher level of attenuation in mice and DeltaphoP also in pigs. In addition, DeltarpoS and DeltaphoP presented a proliferation and survival phenotype within swine intestinal primary fibroblast and macrophage cell cultures, respectively. Collectively, the present results indicate that the DeltarpoS and DeltaphoP strains of S. Choleraesuis gather adequate features to be potential candidates for vaccine vectors for the specific delivery of heterologous antigens adapted to pigs

    Comparative Genomics of Listeria Species

    No full text
    International audienceListeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events
    corecore