8 research outputs found

    The effect of annealing on the elastoplastic and viscoelastic responses of isotactic polypropylene

    Full text link
    Observations are reported on isotactic polypropylene (i) in a series of tensile tests with a constant strain rate on specimens annealed for 24 h at various temperatures in the range from 110 to 150 C and (ii) in two series of creep tests in the sub-yield region of deformation on samples not subjected to thermal treatment and on specimens annealed at 140 C. A model is developed for the elastoplastic and nonlinear viscoelastic responses of semicrystalline polymers. A polymer is treated an equivalent transient network of macromolecules bridged by junctions (physical cross-links, entanglements and lamellar blocks). The network is assumed to be highly heterogeneous, and it is thought of as an ensemble of meso-regions with different activation energies for separation of strands from temporary nodes. The elastoplastic behavior is modelled as sliding of meso-domains with respect to each other driven by mechanical factors. The viscoelastic response is attributed to detachment of active strands from temporary junctions and attachment of dangling chains to the network. Constitutive equations for isothermal uniaxial deformation are derived by using the laws of thermodynamics. Adjustable parameters in the stress-strain relations are found by fitting the experimental data.Comment: 29 pages, 14 figure

    Thermal and mechanical properties of modified CaCO3 filled poly (ethylene terephthalate) nanocomposites

    No full text
    Poly(ethylene terephthalate) (PET)/CaCO3 and PET/modified-CaCO3 (m-CaCO3) nanocomposites were prepared by melt blending. The morphology indicated that m-CaCO3 produced by reacting sodium oxalate and calcium chloride, was well dispersed in PET matrix and showed good interfacial interaction with PET compared to CaCO3. No significant differences in the thermal properties such as, glass transition, melting and degradation temperatures, of the nanocomposites were observed. The thermal shrinkage of PET at 120 ??C was 10.8 %, while those of PET/CaCO3 and PET/m-CaCO3 nanocomposites were 2.9-5.2 % and 1.2-2.8 %, respectively depending on filler content. The tensile strength of PET/CaCO3 nanocomposite decreased with CaCO3 loading, whereas that of PET/m-CaCO3 nanocomposites at 0.5 wt% loading showed a 17 % improvement as compared to neat PET. The storage modulus at 120 ??C increased from 1660 MPa for PET to 2350 MPa for PET/CaCO3 nanocomposite at 3 wt% loading, and 3230 MPa for PET/m-CaCO3 nanocomposite at 1 wt% loadinclose0
    corecore