69 research outputs found

    Synchronizing Protein Traffic to the Primary Cilium

    Get PDF
    The primary cilium is able to maintain a specific protein composition, which is critical for its function as a signaling organelle. Here we introduce a system to synchronize biosynthetic trafficking of ciliary proteins that is based on conditional aggregation domains (CADs). This approach enables to create a wave of ciliary proteins that are transported together, which opens novel avenues for visualizing and studying ciliary import mechanisms. By using somatostatin receptor 3 (SSTR3) as model protein we studied intracellular transport and ciliary import with high temporal and spatial resolution in epithelial Madin-Darby canine kidney (MDCK) cells. This yielded the interesting discovery that SSTR3, besides being transported to the primary cilium, is also targeted to the basolateral plasma membrane. In addition, we found a similar behavior for another ciliary protein, nephrocystin-3 (NPHP3), thus suggesting a potential correlation between ciliary and basolateral trafficking. Furthermore, our CAD-based system allowed assembling a large dataset in which apical and basolateral surface SSTR3 signals could be compared to ciliary SSTR3 signals on a single cell level. This enabled to generate novel complementary evidence for the previously proposed lateral import mechanism of SSTR3 into the cilium along the plasma membrane

    Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation

    Get PDF
    AbstractPseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches.In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell–cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function.Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery

    Complex polarity: building multicellular tissues through apical membrane traffic

    Get PDF
    The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level

    Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clatharin-mediated endocytosis

    Get PDF
    During clathrin-mediated endocytosis, a complex and dynamic network of protein-membrane interactions cooperate to achieve membrane invagination. Throughout this process in yeast, endocytic coat adaptors, Sla2 and Ent1, must remain attached to the plasma membrane to transmit force from the actin cytoskeleton required for successful membrane invagination. Here, we present a cryo-EM structure of a 16-mer complex of the ANTH and ENTH membrane-binding domains from Sla2 and Ent1 bound to PIP2 that constitutes the anchor to the plasma membrane. Detailed in vitro and in vivo mutagenesis of the complex interfaces delineate the key interactions for complex formation and deficient cell growth phenotypes demonstrate its biological relevance. A hetero-tetrameric unit binds PIP2 molecules at the ANTH-ENTH interfaces and can form larger assemblies to contribute to membrane remodeling. Finally, a time-resolved small-angle X-ray scattering study of the interaction of these adaptor domains in vitro suggests that ANTH and ENTH domains have evolved to achieve a fast subsecond timescale assembly in the presence of PIP2 and do not require further proteins to form a stable complex. Together, these findings provide a molecular understanding of an essential piece in the molecular puzzle of clathrin-coated endocytic sites

    Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease.

    Get PDF
    Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by accumulation of vesiculo-tubular endomembranes in the subapical cytoplasm of enterocytes, historically termed "secretory granules." However, neither their identity nor pathophysiological significance is well defined. Using immunoelectron microscopy and tomography, we studied biopsies from MVID patients (3× Myosin 5b mutations and 1× Syntaxin3 mutation) and compared them to controls and genome-edited CaCo2 cell models, harboring relevant mutations. Duodenal biopsies from 2 patients with novel Myosin 5b mutations and typical clinical symptoms showed unusual ultrastructural phenotypes: aberrant subapical vesicles and tubules were prominent in the enterocytes, though other histological hallmarks of MVID were almost absent (ectopic intra-/intercellular microvilli, brush border atrophy). We identified these enigmatic vesiculo-tubular organelles as Rab11-Rab8-positive recycling compartments of altered size, shape and location harboring the apical SNARE Syntaxin3, apical transporters sodium-hydrogen exchanger 3 (NHE3) and cystic fibrosis transmembrane conductance regulator. Our data strongly indicate that in MVID disrupted trafficking between cargo vesicles and the apical plasma membrane is the primary cause of a defect of epithelial polarity and subsequent facultative loss of brush border integrity, leading to malabsorption. Furthermore, they support the notion that mislocalization of transporters, such as NHE3 substantially contributes to the reported sodium loss diarrhea

    A microfluidic biochip for locally confined stimulation of cells within an epithelial monolayer

    No full text
    A key factor determining the fate of individual cells within an epithelium is the unique microenvironment that surrounds each cell. It regulates location-dependent differentiation into specific cellular sub-types, but, on the other hand, a disturbed microenvironment can promote malignant transformation of epithelial cells leading to cancer formation. Here, we present a tool based on a microfluidic biochip that enables novel research approaches by providing a means to control the basolateral micro-environment of a confined number of neighbouring cells within an epithelial monolayer. Through isolated single pores in a thin membrane carrying the epithelial cell layer only cells above the pores are stimu-lated by solutes. The very thin design of the biochip (<75 μm) enabled us to apply a high-resolution inverted confocal fluore-scence microscope to show by live cell imaging that such a manipulation of the microenvironment remained locally restricted to cells located above the pores. In addition, the biochip allows access for the force probe of an atomic force microscope (AFM) from the apical side to determine the topography and mechanical properties of individual cells, which we demonstrated by combined AFM and fluorescence microscopy imaging experiments. Taken together, the presented microfluidic biochip is a powerful tool that will enable studying the initial steps of malignant transformation of epithelial cells by directly manipulating their micro-environment and by real-time monitoring of affected cells with fluorescence microscopy and AFM

    Role of flagellar hydrogen bonding in Salmonella motility and flagellar polymorphic transition.

    No full text
    Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L-type or R-type, having slightly different conformations and inter-protofilaments interactions. By mixing different ratios of L-type and R-type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site-directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non-motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right-handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine's model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility
    • …
    corecore