117 research outputs found
Resistance Exercise Reduces Skeletal Muscle Cachexia and Improves Muscle Function in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune, inflammatory disease associated with cachexia (reduced muscle and increased fat). Although strength-training exercise has been used in persons with RA, it is not clear if it is effective for reducing cachexia. A 46-year-old woman was studied to determine: (i) if resistance exercise could reverse cachexia by improving muscle mass, fiber cross-sectional area, and muscle function; and (2) if elevated apoptotic signaling was involved in cachexia with RA and could be reduced by resistance training. A needle biopsy was obtained from the vastus lateralis muscle of the RA subject before and after 16 weeks of resistance training. Knee extensor strength increased by 13.6% and fatigue decreased by 2.8% Muscle mass increased by 2.1%. Average muscle fiber cross-sectional area increased by 49.7%, and muscle nuclei increased slightly after strength training from 0.08 to 0.12 nuclei/μm2. In addition, there was a slight decrease (1.6%) in the number of apoptotic muscle nuclei after resistance training. This case study suggests that resistance training may be a good tool for increasing the number of nuclei per fiber area, decreasing apoptotic nuclei, and inducing fiber hypertrophy in persons with RA, thereby slowing or reversing rheumatoid cachexia
The Social Studies Curriculum in Atlanta Public Schools During the Desegregation Era
This historical investigation explores how teachers, students, and education officials viewed the social studies curriculum in the local context of Atlanta, and the broader state of Georgia, during the post-Civil Rights era, when integration was a court-ordered reality in the public schools. During the desegregation era, Atlanta schools were led by Atlanta Public Schools (APS) Superintendent, Dr. Alonzo Crim. Brought to Atlanta as part of a desegregation compromise, Dr. Crim became APS\u27s first African American superintendent. In particular, the authors investigate how national social studies movements, such as Man: A Course of Study (MACOS), inquiry-based learning, co-curriculum activities, and standards movements, adapted to fit this Southeastern locale, at a time when schools were struggling to desegregate. Local curriculum documents written in the 1970s reveal a traditional social studies curriculum. By the 1980s, APS\u27s social studies curriculum guides broadened to include a stronger focus on an enacted community—inside the classroom and around the world. In oral history interviews, however, former teachers, students, and school officials presented contrasting perspectives of how the social studies curriculum played out in the reality of Atlanta\u27s public schools during the desegregation era
Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy
Background
A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets.
Methods
Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis.
Results
A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001).
Conclusion
We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
The role of war in deep transitions: exploring mechanisms, imprints and rules in sociotechnical systems
This paper explores in what ways the two world wars influenced the development of sociotechnical systems underpinning the culmination of the first deep transition. The role of war is an underexplored aspect in both the Techno-Economic Paradigms (TEP) approach and the Multi-level perspective (MLP) which form the two key conceptual building blocks of the Deep Transitions (DT) framework. Thus, we develop a conceptual approach tailored to this particular topic which integrates accounts of total war and mechanisms of war from historical studies and imprinting from organisational studies with the DT framework’s attention towards rules and meta-rules. We explore in what ways the three sociotechnical systems of energy, food, and transport were affected by the emergence of new demand pressures and logistical challenges during conditions of total war; how war impacted the directionality of sociotechnical systems; the extent to which new national and international policy capacities emerged during wartime in the energy, food, and transport systems; and the extent to which these systems were influenced by cooperation and shared sacrifice under wartime conditions. We then explore what lasting changes were influenced by the two wars in the energy, food, and transport systems across the transatlantic zone. This paper seeks to open up a hitherto neglected area in analysis on sociotechnical transitions and we discuss the importance of further research that is attentive towards entanglements of warfare and the military particularly in the field of sustainability transitions
A Novel Automated System Yields Reproducible Temporal Feeding Patterns in Laboratory Rodents
Background
The impact of temporal feeding patterns remains a major unanswered question in nutritional science. Progress has been hampered by the absence of a reliable method to impose temporal feeding in laboratory rodents, without the confounding influence of food-hoarding behavior.
Objective
The aim of this study was to develop and validate a reliable method for supplying crushed diets to laboratory rodents in consistent, relevant feeding patterns for prolonged periods.
Methods
We programmed our experimental feeding station to deliver a standard diet [StD; Atwater Fuel Energy (AFE) 13.9% fat] or high-fat diet (HFD; AFE 45% fat) during nocturnal grazing [providing 1/24th of the total daily food intake (tdF/I) of ad libitum–fed controls every 30 min] and meal-fed (3 × 1-h periods of ad libitum feeding) patterns in male rats (Sprague-Dawley: 4 wk old, 72–119 g) and mice [C57/Bl6J wild-type (WT): 6 mo old, 29–37 g], and ghrelin-null littermates (Ghr−/−; 27–34 g).
Results
Grazing yielded accurate, consistent feeding events in rats, with an approximately linear rise in nocturnal cumulative food intake [tdF/I (StD): 97.4 ± 1.5% accurate compared with manual measurement; R2 = 0.86; tdF/I (HFD): 99.0 ± 1.4% accurate; R2 = 0.86]. Meal-feeding produced 3 nocturnal meals of equal size and duration in StD-fed rats (tdF/I: 97.4 ± 0.9% accurate; R2 = 0.90), whereas the second meal size increased progressively in HFD-fed rats (44% higher on day 35 than on day 14; P < 0.01). Importantly, cumulative food intake in grazing and meal-fed rats was identical. Similar results were obtained in WT mice except that less restricted grazing induced hyperphagia (compared with meal-fed WT mice; P < 0.05 from day 1). This difference was abolished in Ghr−/− mice, with meal initiation delayed and meal duration enhanced. Neither pattern elevated corticosterone secretion in rats, but meal-feeding aligned ultradian pulses.
Conclusions
We have established a consistent, measurable, researcher-defined, stress-free method for imposing temporal feeding patterns in rats and mice. This approach will facilitate progress in understanding the physiologic impact of feeding patterns
The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy
Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations.
Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves.
Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p 90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score.
Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
- …