112 research outputs found

    Extreme wet conditions coincident with Bronze Age abandonment of upland areas in Britain

    Get PDF
    Abandonment of farming systems on upland areas in southwest Britain during the Late Bronze Age ā€“ some 3000 years ago ā€“ is widely considered a ā€˜classicā€™ demonstration of the impact of deteriorating climate on the vulnerability of populations in such marginal environments. Here we test the hypothesis that climate change drove the abandonment of upland areas by developing new chronologies for human activity on upland areas during the Bronze Age across southwest Britain (Dartmoor, Exmoor and Bodmin Moor). We find Bronze Age activity in these areas spanned 3900ā€“2950 calendar years ago with abandonment by 2900 calendar years ago. Holocene Irish bog and lake oak tree populations provide evidence of major shifts in hydroclimate across western Britain and Ireland, coincident with ice rafted debris layers recognized in North Atlantic marine sediments, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. We observe abandonment of upland areas in southwest Britain coinciding with a sustained period of extreme wet conditions that commenced 3100 calendar years ago. Our results are consistent with the view that climate change increased the vulnerability of these early farming communities and led to a less intensive use of such marginal environments across Britain

    Global biogeographic patterns of avian morphological diversity

    Get PDF
    Understanding the biogeographical patterns, and evolutionary and environmental drivers, underpinning morphological diversity are key for determining its origins and conservation. Using a comprehensive set of continuous morphological traits extracted from museum collections of 8353 bird species, including geometric morphometric beak shape data, we find that avian morphological diversity is unevenly distributed globally, even after controlling for species richness, with exceptionally dense packing of species in hyper-diverse tropical hotspots. At the regional level, these areas also have high morphological variance, with species exhibiting high phenotypic diversity. Evolutionary history likely plays a key role in shaping these patterns, with evolutionarily old species contributing to niche expansion, and young species contributing to niche packing. Taken together, these results imply that the tropics are both ā€˜cradlesā€™ and ā€˜museumsā€™ of phenotypic diversity

    Evidence for increased expression of the Amundsen Sea Low over the South Atlantic during the late Holocene

    Get PDF
    The Amundsen Sea Low (ASL) plays a major role in the climate and environment of Antarctica and the Southern Ocean, including surface air temperature and sea ice concentration changes. Unfortunately, a relative dearth of observational data across the Amundsen and Bellingshausen seas prior to the satellite era (post-1979) limits our understanding of the past behaviour and impact of the ASL. The limited proxy evidence for changes in the ASL are primarily restricted to the Antarctic where ice core evidence suggests a deepening of the atmospheric pressure system during the late Holocene. However, no data have previously been reported from the northern side of the ASL. Here we report a high-resolution, multi-proxy study of a 5000-year-long peat record from the Falkland Islands, a location sensitive to contemporary ASL dynamics which modulates northerly and westerly airflow across the southwestern South Atlantic sector of the Southern Ocean. In combination with climate reanalysis, we find a marked period of wetter, colder conditions most likely the result of enhanced southerly airflow between 5000 and 2500 years ago, suggesting limited ASL influence over the region. After 2500 years ago, drier and warmer conditions were established, implying more westerly airflow and the increased projection of the ASL onto the South Atlantic. The possible role of the equatorial Pacific via atmospheric teleconnections in driving this change is discussed. Our results are in agreement with Antarctic ice core records and fjord sediments from the southern South American coast, and suggest that the Falkland Islands provide a valuable location for reconstructing high southern latitude atmospheric circulation changes on multi-decadal to millennial timescales

    Obliquity-driven expansion of North Atlantic sea ice during the last glacial

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 10,382ā€“10,390, doi:10.1002/2015GL066344.North Atlantic late Pleistocene climate (60,000 to 11,650ā€‰years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000ā€‰cal years ago (23 to 19ā€‰ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland Ī“18O record reveals a switch in the stability of the climate system around 30ā€‰ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.Australian Research Council2016-06-1

    Anomalous mid-twentieth century atmospheric circulation change over the South Atlantic compared to the last 6000 years

    Get PDF
    Determining the timing and impact of anthropogenic climate change in data-sparse regions is a considerable challenge. Arguably, nowhere is this more difficult than the Antarctic Peninsula and the subantarctic South Atlantic where observational records are relatively short but where high rates of warming have been experienced since records began. Here we interrogate recently developed monthly-resolved observational datasets from the Falkland Islands and South Georgia, and extend the records back using climate-sensitive peat growth over the past 6000 years. Investigating the subantarctic climate data with ERA-Interim and Twentieth Century Reanalysis, we find that a stepped increase in precipitation across the 1940s is related to a change in synoptic atmospheric circulation: a westward migration of quasi-permanent positive pressure anomalies in the South Atlantic has brought the subantarctic islands under the increased influence of meridional airflow associated with the Amundsen Sea Low. Analysis of three comprehensively multi-dated (using 14C and 137Cs) peat sequences across the two islands demonstrates unprecedented growth rates since the mid-twentieth century relative to the last 6000 years. Comparison to observational and reconstructed sea surface temperatures suggests this change is linked to a warming tropical Pacific Ocean. Our results imply 'modern' South Atlantic atmospheric circulation has not been under this configuration for millennia

    Seasonality of Formic Acid (HCOOH) in London during the ClearfLo Campaign

    Get PDF
    Following measurements in the winter of 2012, formic acid (HCOOH) and nitric acid (HNO3) were measured using a chemical ionization mass spectrometer (CIMS) during the Summer Clean Air for London (ClearfLo) campaign in London, 2012. Consequently, the seasonal dependence of formic acid sources could be better understood. A mean formic acid concentration of 1.3 ppb and a maximum of 12.7 ppb was measured which is significantly greater than that measured during the winter campaign (0.63 ppb and 6.7 ppb, respectively). Daily calibrations of formic acid during the summer campaign gave sensitivities of 1.2 ion counts s-1 parts per trillion (ppt) by volume-1 and a limit of detection of 34 ppt. During the summer campaign, there was no correlation between formic acid and anthropogenic emissions such as NOx and CO or peaks associated with the rush hour as was identified in the winter. Rather, peaks in formic acid were observed that correlated with solar irradiance. Analysis using a photochemical trajectory model has been conducted to determine the source of this formic acid. The contribution of formic acid formation through ozonolysis of alkenes is important but the secondary production from biogenic VOCs could be the most dominant source of formic acid at this measurement site during the summer

    Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved (14)C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment (14)C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine (14)C and (10)Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.This work was funded by the Australian Research Council (FL100100195, DP170104665 and SR140300001) and the Natural Environment Research Council (NE/H009922/1 and NE/H007865/1)

    The Effects of Previous Misestimation of Task Duration on Estimating Future Task Duration

    Get PDF
    It is a common time management problem that people underestimate the duration of tasks, which has been termed the "planning fallacy." To overcome this, it has been suggested that people should be informed about how long they previously worked on the same task. This study, however, tests whether previous misestimation also affects the duration estimation of a novel task, even if the feedback is only self-generated. To test this, two groups of participants performed two unrelated, laboratory-based tasks in succession. Learning was manipulated by permitting only the experimental group to retrospectively estimate the duration of the first task before predicting the duration of the second task. Results showed that the experimental group underestimated the duration of the second task less than the control group, which indicates a general kind of learning from previous misestimation. The findings imply that people could be trained to carefully observe how much they misestimate task duration in order to stimulate learning. The findings are discussed in relation to the anchoring account of task duration misestimation and the memory-bias account of the planning fallacy. Ā© 2014 Springer Science+Business Media New York

    Advancing specificity in delirium: The delirium subtyping initiative

    Get PDF
    BACKGROUND: Delirium, a common syndrome with heterogeneous etiologies and clinical presentations, is associated with poor long-term outcomes. Recording and analyzing all delirium equally could be hindering the field's understanding of pathophysiology and identification of targeted treatments. Current delirium subtyping methods reflect clinically evident features but likely do not account for underlying biology. METHODS: The Delirium Subtyping Initiative (DSI) held three sessions with an international panel of 25 experts. RESULTS: Meeting participants suggest further characterization of delirium features to complement the existing Diagnostic and Statistical Manual of Mental Disorders Fifth Edition Text Revision diagnostic criteria. These should span the range of delirium-spectrum syndromes and be measured consistently across studies. Clinical features should be recorded in conjunction with biospecimen collection, where feasible, in a standardized way, to determine temporal associations of biology coincident with clinical fluctuations. DISCUSSION: The DSI made recommendations spanning the breadth of delirium research including clinical features, study planning, data collection, and data analysis for characterization of candidate delirium subtypes. HIGHLIGHTS: Delirium features must be clearly defined, standardized, and operationalized. Large datasets incorporating both clinical and biomarker variables should be analyzed together. Delirium screening should incorporate communication and reasoning

    Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise.

    Get PDF
    Reconstructing past sea levels can help constrain uncertainties surrounding the rate of change, magnitude, and impacts of the projected increase through the 21st century. Of significance is the mid-Holocene relative sea-level highstand in tectonically stable and remote (far-field) locations from major ice sheets. The east coast of Australia provides an excellent arena in which to investigate changes in relative sea level during the Holocene. Considerable debate surrounds both the peak level and timing of the east coast highstand. The southeast Australian site of Bulli Beach provides the earliest evidence for the establishment of a highstand in the Southern Hemisphere, although questions have been raised about the pretreatment and type of material that was radiocarbon dated for the development of the regional sea-level curve. Here we undertake a detailed morpho- and chronostratigraphic study at Bulli Beach to better constrain the timing of the Holocene highstand in eastern Australia. In contrast to wood and charcoal samples that may provide anomalously old ages, probably due to inbuilt age, we find that short-lived terrestrial plant macrofossils provide a robust chronological framework. Bayesian modelling of the ages provide improved dating of the earliest evidence for a highstand at 6,880Ā±50 cal BP, approximately a millennium later than previously reported. Our results from Bulli now closely align with other sea-level reconstructions along the east coast of Australia, and provide evidence for a synchronous relative sea-level highstand that extends from the Gulf of Carpentaria to Tasmania. Our refined age appears to be coincident with major ice mass loss from Northern Hemisphere and Antarctic ice sheets, supporting previous studies that suggest these may have played a role in the relative sea-level highstand. Further work is now needed to investigate the environmental impacts of regional sea levels, and refine the timing of the subsequent sea-level fall in the Holocene and its influence on coastal evolution
    • ā€¦
    corecore