889 research outputs found
Coating ZnO:Zn Nanoparticles with Alumina for Polymer Protection
Using a modified preparation large nanoparticles of ZnO and ZnO:Zn were coated (without destroying the luminescent properties of the latter), but the coating is a layer of AZO not Al2O3. Large nanoparticles of ZnO:Zn were coated with a layer of ZnO by using only (NH4)HCO3 in the absence of Al2SO4
Anosognosia for hemiplegia as a tripartite disconnection syndrome
© 2019 Pacella et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.The syndrome of Anosognosia for Hemiplegia (AHP) can provide unique insights into the neurocognitive processes of motor awareness. Yet, prior studies have only explored predominately discreet lesions. Using advanced structural neuroimaging methods in 174 patients with a right-hemisphere stroke, we were able to identify three neural systems that contribute to AHP, when disconnected or directly damaged: the (i) premotor loop (ii) limbic system, and (iii) ventral attentional network. Our results suggest that human motor awareness is contingent on the joint contribution of these three systems.Peer reviewedFinal Published versio
Australian adults use complementary and alternative medicine in the treatment of chronic illness: a national study
Objectives: The objectives of this study were to identify the prevalence of the use of vitamin/mineral supplements or natural/herbal remedies, concurrent use of pharmaceutical medication, and to profile those most likely to use these complementary and alternative medicines (CAM) in the treatment of five chronic conditions identified as national health priorities (asthma, diabetes, arthritis, osteoporosis, heart or circulatory condition) within the Australian adult population.
Methods: Analysis of the Australian National Health Survey database, 2004–05.
Results: Approximately 24% (1.3 million) of Australian adults with a chronic condition regularly applied CAM to treatment. CAM was most often used exclusively or in combination with pharmaceutical medicine in the treatment of arthritis and osteoporosis. Fewer than 10% of adults with asthma, diabetes or a heart or circulatory condition used CAM, most preferring pharmaceutical medicine. Regular CAM users were more likely to be aged ≥60, female, have a secondary school education and live in households with lower incomes than non-users. Non-users were more likely to be 30–59 years old and tertiary educated.
Conclusion and implications: Arthritis, osteoporosis and, to a lesser extent, heart or circulatory conditions are illnesses for which doctors should advise, and patients need to be most aware about the full effects of CAM and possible interactive effects with prescribed medicine. They are also conditions for which research into the interactive effects of CAM and pharmaceutical medication would seem of most immediate benefit
Packing Arc-Disjoint Cycles in Tournaments
A tournament is a directed graph in which there is a single arc between every pair of distinct vertices. Given a tournament T on n vertices, we explore the classical and parameterized complexity of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint cycles) of size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We refer to these problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint Triangles in Tournaments (ATT), respectively. Although the maximization version of ACT can be seen as the linear programming dual of the well-studied problem of finding a minimum feedback arc set (a set of arcs whose deletion results in an acyclic graph) in tournaments, surprisingly no algorithmic results seem to exist for ACT. We first show that ACT and ATT are both NP-complete. Then, we show that the problem of determining if a tournament has a cycle packing and a feedback arc set of the same size is NP-complete. Next, we prove that ACT and ATT are fixed-parameter tractable, they can be solved in 2^{O(k log k)} n^{O(1)} time and 2^{O(k)} n^{O(1)} time respectively. Moreover, they both admit a kernel with O(k) vertices. We also prove that ACT and ATT cannot be solved in 2^{o(sqrt{k})} n^{O(1)} time under the Exponential-Time Hypothesis
Imaging the spotty surface of Betelgeuse in the H band
This paper reports on H-band interferometric observations of Betelgeuse made
at the three-telescope interferometer IOTA. We image Betelgeuse and its
asymmetries to understand the spatial variation of the photosphere, including
its diameter, limb darkening, effective temperature, surrounding brightness,
and bright (or dark) star spots. We used different theoretical simulations of
the photosphere and dusty environment to model the visibility data. We made
images with parametric modeling and two image reconstruction algorithms: MIRA
and WISARD. We measure an average limb-darkened diameter of 44.28 +/- 0.15 mas
with linear and quadratic models and a Rosseland diameter of 45.03 +/- 0.12 mas
with a MARCS model. These measurements lead us to derive an updated effective
temperature of 3600 +/- 66 K. We detect a fully-resolved environment to which
the silicate dust shell is likely to contribute. By using two imaging
reconstruction algorithms, we unveiled two bright spots on the surface of
Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5%
of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of
the total flux. Resolved images of Betelgeuse in the H band are asymmetric at
the level of a few percent. The MOLsphere is not detected in this wavelength
range. The amount of measured limb-darkening is in good agreement with model
predictions. The two spots imaged at the surface of the star are potential
signatures of convective cells.Comment: 10 pages, 10 figures, accepted for publication in A&A, references
adde
Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize
Background: Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays - hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Results: Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. Conclusion: Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA
Differential sRNA Regulation in Leaves and Roots of Sugarcane under Water Depletion
Plants have developed multiple regulatory mechanisms to respond and adapt to stress. Drought stress is one of the major constraints to agricultural productivity worldwide and recent reports have highlighted the importance of plant sRNA in the response and adaptation to water availability. In order to increase our understanding of the roles of sRNA in response to water depletion, cultivars of sugarcane were submitted to treatment of ceasing drip irrigation for 24 hours. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty-eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profiles of eight miRNA were verified in leaf samples from three biological replicates by stem-loop qRT-PCR assay using the cultivars: SP90-1638 - sensitive cultivar- and; SP83-2847 and SP83-5073 - tolerant cultivars. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. Two leaf libraries from individual sugarcane cultivars with contrasting drought-tolerance properties were also analyzed. An enrichment of 22-nt sRNA species was observed in leaf libraries. 22-nt miRNA triggered siRNA production by cleavage of their targets in response to water depletion. A number of genes of the sRNA biogenesis pathway were down-regulated in tolerant genotypes and up-regulated in sensitive in response to water depletion treatment. Our analysis contributes to increase the knowledge on the roles of sRNA in sugarcane submitted to water depletion
- …