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Abstract In this paper it is argued how the dynamics of the
classical Newtonian N-body system can be described in terms
of the Schrödinger–Poisson equations in the large N limit.
This result is based on the stochastic quantization introduced
by Nelson, and on the Calogero conjecture. According to the
Calogero conjecture, the emerging effective Planck constant
is computed in terms of the parameters of the N-body system
as h̄ ∼ M5/3G1/2(N/〈ρ〉)1/6, where is G the gravitational
constant, N and M are the number and the mass of the bodies,
and 〈ρ〉 is their average density. The relevance of this result in
the context of large scale structure formation is discussed. In
particular, this finding gives a further argument in support of
the validity of the Schrödinger method as numerical double
of the N-body simulations of dark matter dynamics at large
cosmological scales.

1 Introduction

It is widely accepted tat the formation of large scale structures
(LSS) in the universe, as superclusters, sheets and filaments
[1–4], is shaped by collisionless dark matter (DM) [5,6] (see
[7] for an historical review of DM). In the standard Λ-CDM
cosmological model [8], DM is assumed to be constituted of
unknown particle species that interact (almost) only gravita-
tionally, and DM is described as a cold fluid at cosmological
scales. In fact, cold dark matter (CDM) is in agreement with
all cosmological data, including LSS [1–4], CMB [9,10],
leansing [11], BAO [12], and supernovae [13,14] results.
Even though DM particles are still elusive, there are cur-
rently many DM candidates, and the search for DM particles
is an open issue [15].
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In this context, the study of the evolution of CDM becomes
crucial. At large cosmological scales, CDM is successfully
described as a pressureless dust fluid; but this assumption
fails at smaller scales, where bound structures form. At small
scales, and for realistic cases where the typical velocities are
non-relativistic, the Newtonian limit of the Einstein equa-
tions is sufficient to describe the time evolution of massive
bodies within the universe [16–18]. Therefore, at cosmologi-
cal scales CDM can be safely described as a classical N-body
system in which the individual particles represent bounded
agglomerates of DM particles that interact only gravitation-
ally.

The first and most natural way to treat this N-body system
is to resort to N-body numerical simulations [19–24]. For
instance, the MILLENNIUM simulation [19,20] was carried
out tracing the evolution of N ∼ 1010 identical particles
of mass M � 109M�, where M� � 2 × 1030 kg is the
solar mass. The particles in the N-body system represent
huge agglomerations of elementary dark matter particles, and
although in the simulation these particles do all have the same
mass, this description is sufficient to explain how halos with
a wide variety of masses and different abundances are built
up from such effective particles. In fact, the simulation shows
the formation of galactic halos made of hundreds of particles,
and of clusters of galaxies made of millions of particles.

One might argue that the choice of the mass of the particles
in the N-body simulation is arbitrary, and question whether
this choice affects the final results. This does not seem to
be the case [19–24], as far as the mass M is much smaller
than the mass of the objects that we study; e.g. M should be
much smaller than the mass of galaxies if one wants to study
the formation of galactic halos, but it can be of the order of
the (average) mass of galactic halos if one aims to describe
the formation of LSS. Of course, a practical lower bound
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on M comes from the fact that decreasing M , and therefore
increasing the resolution attained in the N-body simulation,
one increases the computational effort to solve the N-body
dynamics numerically.

Thus, although the choice M � 109M� in the N-body
simulations is fit for purpose, it is still arbitrary. However, an
indication on the plausibility of this value comes from scalar
field DM models [25]. In fact, a massive and non-interacting
scalar field with lagrangian density L = ∂μΦ∂μΦ −mφ |Φ|2
forms bound DM halos [26] (the generalization to self-
interacting scalar fields with quartic potential has been stud-
ied in [27,28]). In the case of spherically symmetric scalar
field configurations Φ = exp [−imφ t]σ(r)/

√
2, the size of

the halo is given by l ∼ √
MP/σ(0)

(
h̄/mφc

)
. From such

a relation it is quite evident that, even if MP/σ(0) � 1
so that l is much bigger than the Compton wavelength of
DM particles, halos of size above �10 kpc are formed only
for ultralight DM particles. The typical orbiting velocity in
the halo is vo/c ∼ √

σ(0)MP , and using l ∼ 10 kpc and
vo ∼ 100 km/s for low luminosity spiral galaxies, one has
σ(0)/MP ∼ 10−6, while m ∼ 10−23 eV [26]. We stress that
this estimate of mφ coincides (in order of magnitude) with
that obtained in [49–52]. Furthermore, the mass M of the

halo in this simple model is given by M ∼
√

σ(0)M3
P/m2

φ ∼
109M� [26], indeed m ∼ 10−23 is an upper bound for the
DM particle mass yielding a lower bound for the masses of
halos that can be realized. We mention that scalar field dark
matter might be useful to resolve potential small scale prob-
lems of CDM; see [29] for an exhaustive discussion of this
issue.

Due to the huge numerical effort to solve the N-body
problem in realistic situations when N ∼ 1010, it would
be desirable to have a simple analytical model from which
it is possible to extract the most important physical proper-
ties of this N-body system. An alternative is to describe the
N-body dynamics statistically, by means of the phase-space
distribution of the bodies f (t, x, p), where the evolution of
f (t, x, p) is given by the Boltzmann equation. In the case of
LSS, N is large and collisions are suppressed; moreover, the
dynamics is only affected by the Newtonian potential [30],
so that the Boltzmann equation reduces to a Vlasov (or col-
lisionless Boltzmann) equation [31]. Although this model is
simple from a conceptual point of view, there is no general
solution of the Vlasov equation. However, the relevant phys-
ical information can be extracted from the momenta M (n)

of the distribution function. To do so, one should solve the
infinitely coupled hierarchy of equations for the momenta
M (n), and it turns out that the only coherent way to neglect
higher cumulants is to neglect them entirely [32]; but in this
case one reduces the model to the dust model, which we know
to be inappropriate to describe halo formation, while giving
a good description of LSS at larger scales.

We can assume that, for our purposes, it is sufficient to
study the evolution of smoothed density and velocity fields
[33–35]. A possibility is to use the so called Schrödinger
method (ScM), which has been proposed as numerical tech-
nique to describe the dynamics of CDM [36–52].

ScM is based on the hypothesis that, in the Newtonian
limit, it is possible to describe the evolution of DM by means
of a wave function ψ , such that the DM density is given
by ρDM = M |ψ |2, where M represents the effective mass
of DM particles. The wave function ψ obeys the coupled
Schrödinger–Poisson equations (SPEs)

i h̄∂tψ = − h̄2

2a(t)M
	ψ + MVψ,

	V = 4πGρ, (1)

where V is the Newtonian potential, ρ is the energy density
of the universe, a(t) is a scale factor introduced to take into
account the expansion of the universe, and h̄ is a parameter
representing an effective Planck constant. The Newtonian
potential V is determined through the Poisson equation in
(1). The form of the DM density used to run cosmological
simulations in [36–52] is ρ = (M |ψ |2 − ρcrit)/a(t), where
ρcrit is a parameter representing a comoving critical density
of the universe, although some authors assume ρcrit = 0, so
that the SPEs reduce to the Schrödinger–Newton equations
[53]. However, since we are not interested in discussing the
explicit form of the DM density, we will use the generic
expression ρ. Furthermore, here we are only focused on the
relation between the ScM and N-body simulations, and this
is not related to the expansion of the universe; thus, hereafter
we set a(t) = 1.

The SPEs can be viewed as the non-relativistic limit of
the Klein–Gordon and Dirac equations, and their theoreti-
cal justification follows from the correspondence principle
that relates classical and quantum mechanical phase-space-
distribution functions in the semiclassical limit [54]. In this
case h̄ coincides with the Planck constant, and M is the
mass of the elementary DM particles. Numerical solutions
of the SPEs point towards ultralight DM particles of mass
M ∼ 10−23 eV [49–51].

Alternatively, the ScM has been introduced as a numeri-
cal double of the N-body description of DM at large scales;
see e.g. [36,37,48] and the references therein. In this case,
the effective particles in the N-body system are again huge
agglomerates of DM elementary particles, and therefore M
is huge in comparison with the mass of elementary DM par-
ticles. Moreover, the constant h̄ in (1) does not coincide
with the Planck constant, nor is fixed by the N-body prob-
lem, but it is merely a free parameter that can be chosen
at will. Furthermore, due to the correspondence principle
[54], h̄ determines the phase-space resolution in the ScM. To
ensure the match with N-body simulations one must require
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h̄/M ∼ 10−4 Mpc · c, so that h̄ is huge in comparison with
the true Planck constant.

It is worth to emphasize the difficulty in reconciliating
such huge values of M and h̄ with the derivation of the SPEs
from the fundamental quantum mechanical evolution of DM
particles. In fact, even though one might assume that M rep-
resents the mass of huge agglomerates of DM particles, one
encounters the insurmountable problem of explaining the
extremely large value of h̄. In fact, since the Planck con-
stant is fundamental, its value should not be affected by the
Newtonian and semiclassical limits.

In this paper we discuss the relation between the ScM and
the N-body description of DM used in numerical simulations
[19–24], and we argue how the SPEs can be obtained as
the large N limit of the Newtonian N-body system. This
argument is valid beyond the context of LSS formation, and
it implies that any Newtonian N-body system of identical
bodies can be described by means of the SPEs, and that makes
this finding of wide interest. For completeness, we mention
that the correspondence between the ScM method and the
Vlasov equation has been extensively studied, and we remind
the interested reader of the existing literature; see [48] and
the references therein.

Our staring point is the Newtonian N-body system of
DM agglomerates considered in [19–24]. We show that the
dynamics of this system satisfies the hypothesis of the so
called Nelson stochastic quantization [55] in the large N
limit. That implies that the evolution of the system can be
described statistically, by means of the Schrödinger equation.
The stochastic background responsible for the Nelson quan-
tization is given, as in the Calogero conjecture, by the grav-
itational interaction between the N bodies, and its stochastic
character is due to the chaotic behavior of the N-body dynam-
ics. What is more, the Calogero conjecture also allows one
to estimate the order of magnitude of the effective Planck
constant.

To begin, let us discuss briefly the hypothesis of the Nelson
stochastic quantization [56], and let us consider a particle
of mass M which moves according to the Newton laws of
motion. The further assumption is that this particle constantly
undergoes a Brownian motion with no friction, and with a
diffusion coefficient h̄/M inversely proportional to its mass
M . Therefore, the trajectory of this particle will be given by

M ẍ = −∇φ + B(t) (2)

where −∇φ represents all the conservative forces, and B(t)
is a random variable with zero mean, representing a small ran-
dom noise. Nelson has shown [55] that, under these hypothe-
ses, the motion of the particle can be described by means of
a stochastic process, and the probability distribution f (x) of
the particle can be expressed as f (x) = |ψ |2, in terms of a
wave function ψ satisfying the Schrödinger equation

i h̄∂tψ = − h̄2

2M 	ψ + φψ. (3)

Therefore, in this picture the quantum behavior of the
dynamics of the particle is not a fundamental property of the
nature, but it is induced by the random field B(t). It is nec-
essary to note that the Nelson quantization only implies the
emergence of the Schrödinger equation (3), which of course,
does not encompass all the features of quantum mechanics.
For instance, all the properties related to the measurement
processes in quantum mechanics, e.g. entanglement, have not
been derived in the context of Nelson quantization. However,
we are not interested in discussing the validity of the Nelson
quantization as a real theory of the quantum world, and we
refer the reader interested in this problem to the literature
(see [56] and the references therein); but we want to exploit
the result of Nelson in the context of N-body dynamics.

At this point, one can ask the question of the nature of the
random field B(t) responsible for the emergent quantization.
One of the most studied possibilities is that B(t) is the ran-
dom zero-point radiation field of the electromagnetic field
[56]. Another possibility, conjectured by Calogero [57,58],
is that the random noise B(t) is the resultant of the gravita-
tional interaction of the particle with all the other particles of
the universe. In fact, apart from the interaction with neigh-
boring bodies which is not small and must be included in
the potential φ, the gravitational interaction with far bodies
behaves as a small background noise, and its random behavior
comes from the fact that the classical dynamics of a N-body
system is chaotic (see for instance [59] for a review of clas-
sical chaos). In the context of cosmological simulations, it
has been shown that chaos appears at scales smaller than a
critical transition scale ∼3.5 Mpc/h, where h is the dimen-
sionless Hubble parameter, while the dynamics appears to be
nonsensitive to initial conditions (thus non-chaotic) at larger
scales; see [60] for more details.

Therefore, any particle of the N-body system experiences
a stochastic gravitational acceleration due to the rest of the
system. Exploiting this idea, Calogero has shown that the
order of magnitude of the induced Planck constant is [57]

h̄ ∼ M5/3G1/2(N/〈ρ〉)1/6, (4)

where N and M are the number and the mass of the bodies,
〈ρ〉 is the average density of the system, and G the gravita-
tional constant.

Let us briefly describe how (4) can be obtained on the
basis of semiquantitative arguments. The relevant quantities
in our analysis are the dimensional parameters G, M , and
〈ρ〉; plus N , which of course is dimensionless. From these
quantities we can define the unit of time T as

T ∼ (G〈ρ〉)−1/2. (5)
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We want to estimate the characteristic time τ of the stochastic
acceleration that each particle of the system undergoes due to
all the other particles. Since the N-body dynamics is chaotic,
it is plausible that the characteristic frequency of this motion
ν ∼ 2π/τ should be a growing function of N , and since the
background gravitational noise is due to a collective stochas-
tic effect, it is also plausible to assume that ν is proportional
to the square root of N , so that

τ ∼ N−1/2T . (6)

The “quantum” of action (that is, the characteristic action)
associated with the stochastic gravitational noise is obtained
multiplying τ by the gravitational energy per particle ε,
which is estimated as

ε ∼ G(NM)2R−1N−1 ∼ GM5/3N 2/3〈ρ〉−1/3, (7)

where the length R ≡ (NM/〈ρ〉)1/3 represents the average
linear size of the N-body system. Therefore, the effective
Planck constant is obtained: h̄ ≡ ετ , which finally gives Eq.
(4). At that point we should emphasize that this argument is
not a pure dimensional analysis since, even though the expo-
nents of the dimensional quantities in (4) are fixed by their
dimensions, the dependence on the dimensionless quantity
N is fixed by the assumption made in (6), which plays a fun-
damental role in the derivation of (4). We stress that (6) can
be justified in a more rigorous way, and we refer the reader to
[57,58], where this relation has been derived through a more
detailed analysis of the properties of the Newtonian N-body
system.

Let us come back to our gravitational N-body system.
Using the Calogero conjecture, we have argued that, due
to the classical gravitational interaction with all the other
particles, any particle in the system undergoes a stochas-
tic gravitational noise which plays the role of the stochastic
random noise B(t) in (2). Thus, the dynamics of each par-
ticle of the system is given in terms of a wavefunction ψ

solution of (3), where h̄ is given by (4). At that point, we
can express the wavefunction of the entire system using the
Hartree–Fock approximation, so that the number density of
the N-body system will be n(x) = N |ψ |2. This is the ana-
log of the derivation of the famous Gross–Pitaevskii equa-
tion [62] for a Bose–Einstein condensate by means of the
Hartree–Fock approximation; see [61] for a detailed analysis
of the quantum many-body system of bosons. Finally, the
potential in (3) is φ = MV , where V is the gravitational
potential solution of the Poisson equation, 	V = 4πGρ,
where ρ = Mn(x).

Of course, this analysis is accurate only for N large,
and therefore we conclude the dynamics of the N-body sys-
tem is well described by the SPEs (1) in the large N limit.
Finally, we stress that the resolution of the SPEs in the

phase space is fixed by h̄, which in turn is fixed by the
corresponding N-body problem. However, for given values
of 〈ρ〉 and N , this resolution is improved on decreasing
M , which is also true for the corresponding N-body sys-
tem.

We can now exploit this result in the context of the LSS
formation. In fact, if we come back to the description of the
CDM dynamics at large scales as a Newtonian system of
N ∼ 1010 bodies (which in our case represent huge aggrega-
tions of DM particles) of mass M , which interact only grav-
itationally, we immediately realize that the hypothesis of the
Nelson quantization are satisfied, as in the Calogero conjec-
ture. In this picture, the gravitational interaction produces
the background random field B(t), which in turn induces
the Nelson quantization, and this fact justifies the quantum
mechanical treatment of the system by means of the SPEs (1).

The advantage of this deduction of SPEs from the N-body
dynamics is that we can use the Calogero result (4) to estimate
the order of magnitude of h̄ in terms of the parameters of the
N-body problem, so that h̄ is no longer a free parameter. In
a virialized system of size L with velocity dispersion σ , the
resolution in phase space in a Schrödinger code is given by
	x	v ∼ σ L/NG , where NG = L/d is the number of grid
points andd is the grid spacing in the simulation [36,37]. This
estimate must be compared with the value 	x	v ∼ h̄/M ∼
M2/3G1/2(N/〈ρ〉)1/6 obtained from (4). For instance, in the
case of the MILLENNIUM simulation [19,20], where the N-
body problem is solved for N � 1010 particles of mass M �
109M�, using 〈ρ〉 � 3H2

0 /8πG � 4×10−26 kg/m3, where
H0 � h−1 ×100× km/s Mpc, with h � 0.73, is the Hubble
constant, one has h̄ � 2×1066 kg m2/s. This corresponds to
a value h̄/M � 10−4 Mpc · c in the range of values used in
numerical simulations, e.g. h̄/M ∼ 10−4 Mpc · c in [48,50]
or h̄/M ∼ 10−6 Mpc · c in [49,51].

In conclusion, in this paper it has been shown that the
dynamics of the classical Newtonian N-body system is well
described in terms of the SPEs in the large N limit. This
is due to the stochastic quantization of the N-body system
induced by the random gravitational background produced
by the N bodies, as in the Calogero conjecture. Moreover,
the emerging effective Planck constant in the SPEs can be
computed by means of (4) in terms of the parameters of the
corresponding N-body system.

When applied to LSS formation, this finding gives a fur-
ther argument in support of the validity of the Schrödinger
method as numerical double of the N-body simulations of
DM dynamics at large cosmological scales [19–24], and it
offers a natural justification for the huge value of h̄ often used
in numerical solutions of SPEs. These results are particularly
remarkable, since this derivation of SPEs in the context of
the Schrödinger method is the first practical application of
the Nelson quantization and of the Calogero conjecture to a
realistic physical problem.
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During the proofreading of this manuscript, the author has
noticed a paper [63], where it has been presented a general-
ized Schrödinger equation derived from the theory of scale
relativity, and its application to the problem of dark mat-
ter halos formation has been discussed. Due to the links to
the results presented in this manuscript, such paper has been
included in the literature.
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