16 research outputs found

    Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle

    Get PDF
    To elucidate genome-level responses to drought and high-salinity stress in rice, a 70mer oligomer microarray covering 36,926 unique genes or gene models was used to profile genome expression changes in rice shoot, flag leaf and panicle under drought or high-salinity conditions. While patterns of gene expression in response to drought or high-salinity stress within a particular organ type showed significant overlap, comparison of expression profiles among different organs showed largely organ-specific patterns of regulation. Moreover, both stresses appear to alter the expression patterns of a significant number of genes involved in transcription and cell signaling in a largely organ-specific manner. The promoter regions of genes induced by both stresses or induced by one stress in more than one organ types possess relative enrichment of two cis-elements (ABRE core and DRE core) known to be associated with water stress. An initial computational analysis indicated that novel promoter motifs are present in the promoters of genes involved in rehydration after drought. This analysis suggested that rice might possess a mechanism that actively detects rehydration and facilitates rapid recovery. Overall, our data supports a notion that organ-specific gene regulation in response to the two abiotic stresses may primarily be mediated by organ-specific transcription responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11103-006-9111-1) contains supplementary material, which is available to authorized users

    Sequence composition and genome organization of maize

    No full text
    Zea mays L. ssp. mays, or corn, one of the most important crops and a model for plant genetics, has a genome ≈80% the size of the human genome. To gain global insight into the organization of its genome, we have sequenced the ends of large insert clones, yielding a cumulative length of one-eighth of the genome with a DNA sequence read every 6.2 kb, thereby describing a large percentage of the genes and transposable elements of maize in an unbiased approach. Based on the accumulative 307 Mb of sequence, repeat sequences occupy 58% and genic regions occupy 7.5%. A conservative estimate predicts ≈59,000 genes, which is higher than in any other organism sequenced so far. Because the sequences are derived from bacterial artificial chromosome clones, which are ordered in overlapping bins, tagged genes are also ordered along continuous chromosomal segments. Based on this positional information, roughly one-third of the genes appear to consist of tandemly arrayed gene families. Although the ancestor of maize arose by tetraploidization, fewer than half of the genes appear to be present in two orthologous copies, indicating that the maize genome has undergone significant gene loss since the duplication event

    Rapid recent growth and divergence of rice nuclear genomes

    No full text
    By employing the nuclear DNA of the African rice Oryza glaberrima as a reference genome, the timing, natures, mechanisms, and specificities of recent sequence evolution in the indica and japonica subspecies of Oryza sativa were identified. The data indicate that the genome sizes of both indica and japonica have increased substantially, >2% and >6%, respectively, since their divergence from a common ancestor, mainly because of the amplification of LTR-retrotransposons. However, losses of all classes of DNA sequence through unequal homologous recombination and illegitimate recombination have attenuated the growth of the rice genome. Small deletions have been particularly frequent throughout the genome. In >1 Mb of orthologous regions that we analyzed, no cases of complete gene acquisition or loss from either indica or japonica were found, nor was any example of precise transposon excision detected. The sequences between genes were observed to have a very high rate of divergence, indicating a molecular clock for transposable elements that is at least 2-fold more rapid than synonymous base substitutions within genes. We found that regions prone to frequent insertions and deletions also exhibit higher levels of point mutation. These results indicate a highly dynamic rice genome with competing processes for the generation and removal of genetic variation

    Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco

    No full text
    Transfer of organelle DNA into the nuclear genome has been significant in eukaryotic evolution, because it appears to be the origin of many nuclear genes. Most studies on organelle DNA transfer have been restricted to evolutionary events but experimental systems recently became available to monitor the process in real time. We designed an experimental screen to detect plastid DNA (ptDNA) transfers to the nucleus in whole plants grown under natural conditions. The resultant genotypes facilitated investigation of the evolutionary mechanisms underlying ptDNA transfer and nuclear integration. Here we report the characterization of nuclear loci formed by integration of newly transferred ptDNA. Large, often multiple, fragments of ptDNA between 6.0 and 22.3 kb in size are incorporated into chromosomes at single Mendelian loci. The lack of chloroplast transcripts of comparable size to the ptDNA integrants suggests that DNA molecules are directly involved in the transfer process. Microhomology (2–5 bp) and rearrangements of ptDNA and nuclear DNA were frequently found near integration sites, suggesting that nonhomologous recombination plays a major role in integration. The mechanisms of ptDNA integration appear similar to those of biolistic transformation of plant cells, but no sequence preference was identified near junctions. This article provides substantial molecular analysis of real-time ptDNA transfer and integration that has resulted from natural processes with no involvement of cell injury, infection, and tissue culture. We highlight the impact of cytoplasmic organellar genome mobility on nuclear genome evolution

    A GeneTrek analysis of the maize genome

    No full text
    Analysis of the sequences of 74 randomly selected BACs demonstrated that the maize nuclear genome contains ≈37,000 candidate genes with homologues in other plant species. An additional ≈5,500 predicted genes are severely truncated and probably pseudogenes. The distribution of genes is uneven, with ≈30% of BACs containing no genes. BAC gene density varies from 0 to 7.9 per 100 kb, whereas most gene islands contain only one gene. The average number of genes per gene island is 1.7. Only 72% of these genes show collinearity with the rice genome. Particular LTR retrotransposon families (e.g., Gyma) are enriched on gene-free BACs, most of which do not come from pericentromeres or other large heterochromatic regions. Gene-containing BACs are relatively enriched in different families of LTR retrotransposons (e.g., Ji). Two major bursts of LTR retrotransposon activity in the last 2 million years are responsible for the large size of the maize genome, but only the more recent of these is well represented in gene-containing BACs, suggesting that LTR retrotransposons are more efficiently removed in these domains. The results demonstrate that sample sequencing and careful annotation of a few randomly selected BACs can provide a robust description of a complex plant genome
    corecore