15 research outputs found

    Dose Response Effects of Dermally applied Diethanolamine on Neurogenesis in Fetal Mouse Hippocampus and Potential Exposure of Humans

    Get PDF
    Diethanolamine (DEA) is a common ingredient of personal care products. Dermal administration of DEA diminishes hepatic stores of the essential nutrient choline and alters brain development. We previously reported that 80 mg/kg/day of DEA during pregnancy in mice reduced neurogenesis and increased apoptosis in the fetal hippocampus. This study was designed to establish the dose-response relationships for this effect of DEA. Timed-pregnant C57BL/6 mouse dams were dosed dermally from gestation day 7–17 with DEA at 0 (controls), 5, 40, 60, and 80 mg/kg body/day. Fetuses (embryonic day 17 [E17]) from dams treated dermally with 80 mg/kg body/day DEA had decreased neural progenitor cell mitosis at the ventricular surface of the ventricular zone (hippocampus, 54.1 ± 5.5%; cortex, 58.9 ± 6.8%; compared to controls; p < 0.01). Also, this dose of DEA to dams increased rates of apoptosis in E17 fetal hippocampus (to 177.2 ± 21.5% of control; measured using activated caspase-3; p < 0.01). This dose of DEA resulted in accumulation of DEA and its metabolites in liver and in plasma. At doses of DEA less than 80 mg/kg body/day to dams, there were no differences between treated and control groups. In a small group of human subjects, dermal treatment for 1 month with a commercially available skin lotion containing 1.8 mg DEA per gram resulted in detectable plasma concentrations of DEA and dimethyldiethanolamine, but these were far below those concentrations associated with perturbed brain development in the mouse

    Dietary Choline Reverses Some, but Not All, Effects of Folate Deficiency on Neurogenesis and Apoptosis in Fetal Mouse Brain1–3

    Get PDF
    In mice, maternal dietary folate, a cofactor in 1-carbon metabolism, modulates neurogenesis and apoptosis in the fetal brain. Similarly, maternal dietary choline, an important methyl-donor, also influences these processes. Choline and folate are metabolically interrelated, and we determined whether choline supplementation could reverse the effects of folate deficiency on brain development. Timed-pregnant mice were fed control (CT), folate-deficient (FD), or folate-deficient, choline-supplemented (FDCS) AIN-76 diets from d 11 to 17 (E11–17) of pregnancy, and on E17, fetal brains were collected for analysis. Compared with the CT group, the FD group had fewer neural progenitor cells undergoing mitosis in the ventricular zones of the developing mouse brain septum (47%; P < 0.01), hippocampus (29%; P < 0.01), striatum (34%; P < 0.01), and anterior and mid-posterior neocortex (33% in both areas; P < 0.01). In addition, compared with CT, the FD diet almost doubled the rate of apoptosis in the fetal septum and hippocampus (P < 0.01). In the FDCS group, the mitosis rates generally were intermediate between those of the CT and FD groups; mitosis rates in the septum and striatum were significantly greater compared with the FD group and were significantly lower than in the CT group only in the septum and neocortex. In the FDCS group, the hippocampal apoptosis rate was significantly lower than in the FD group (P < 0.01) and was the same as in the CT group. In the septum, the apotosis rate in the FDCS group was intermediate between the CT and FD groups' rates. These results suggest that neural progenitor cells in fetal forebrain are sensitive to maternal dietary folate during late gestation and that choline supplementation can modify some, but not all, of these effects
    corecore