5 research outputs found

    Tetracycline-Loaded Electrospun Poly(L-lactide-co-ε-caprolactone) Membranes for One-Step Periodontal Treatment

    Get PDF
    In this research, a one-step periodontal membrane, with the required function and properties, has been designed as an alternative method of tissue regenerative treatments. Designed nanoporous prototypes from poly(l-lactide-co-ε-caprolactone) (PLCL, 70:30 mol %) were fabricated by electrospinning, denoted as S-PLCL. They were subsequently loaded with tetracycline (TC) in order to enhance periodontal regeneration and deliver an anti-inflammatory and antibiotic drug. It was found that TC loading did not have any significant effect on the fiber diameter but did increase hydrophilicity. With the increase in TC loading, the water vapor permeability (WVP) of the S-PLCL membrane decreased within the range of 31–56% when compared with neat S-PLCL membranes, while in the solvent-cast film (F-PLCL), no significant change in WVP was observed. Moreover, S-PLCL demonstrated a controllable slow release rate of TC. S-PLCL loaded with 1500 μg/mL of TC showed a release concentration of 30 ppm over a certain time period to promote greater levels of human oral fibroblast and human oral keratinocyte cell proliferation and plaque inhibition. In conclusion, a TC-loaded S-PLCL fibrous membrane has been designed and fabricated to provide the ideal conditions for cell proliferation and antibiotic activity during treatment, outperforming nonfibrous F-PLCL loaded with TC at the same concentration

    Ring-opening polymerization of ε-caprolactone initiated by tin(II) octoate/n-hexanol: DSC isoconversional kinetics analysis and polymer synthesis

    No full text
    The kinetics of ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) initiated by 1.0, 1.5 and 2.0 mol% of stannous(II) octoate/n-hexanol (Sn(Oct)2/n-HexOH) wase successfully studied by non-isothermal differential scanning calorimetry (DSC) at heating rates of 5, 10, 15 and 20 °C/min. The DSC polymerization kinetic parameters of ε-CL were calculated using differential (Friedman) and integral isoconversional methods (Kissinger-Akahira-Sunose, KAS). The average activation energy (Ea) values obtained from Friedman and KAS methods were in the range of 64.9–70.5 kJ/mol and 64.9–80.4 kJ/mol, respectively. The values of frequency factor (A) were determined from model fitting method using Avrami-Erofeev reaction model. The average values of A for the ROP of ε-CL initiated by 1.0, 1.5 and 2.0 mol% of Sn(Oct)2/n-HexOH (1:2) were 7.3x107, 2.8x106 and 1.2x106 min−1, respectively. From kinetics studied, the polymerization rate of ε-CL increased with increasing initiator concentration. The performance of Sn(Oct)2/n-HexOH in the synthesis of poly(ε-caprolactone) (PCL) was investigated by bulk polymerization at temperatures of 140, 160 and 180 °C. Sn(Oct)2/n-HexOH (1:2) could produce high number average molecular weight (Mn‾\overline {{M_{\rm{n}}}} = 9.0 × 104 g/mol) and %yield (89%) of PCL in a short period of time at Sn(Oct)2 concentration of 0.1 mol% and temperature of 160°C. The mechanism of the ROP of ε-CL with Sn(Oct)2/n-HexOH was proposed through the coordination-insertion mechanism

    Polylactides in additive biomanufacturing

    No full text
    corecore