656 research outputs found

    Understanding Plasmas through Ion Velocity Distribution Function measurements

    Get PDF
    This work concerns measurements of ion velocity distribution functions (IVDF) using three different diagnostic techniques in expanding argon plasmas generated by two different helicon plasma sources. A theoretical prediction by Lieberman et al., of enhanced upstream ionization by electrons accelerating upstream, due to the formation of a stable electrostatic current-free double layer (DL) in an expanding plasma, was verified through laser induced fluorescence (LIF) and retarding field energy analyzer (RFEA) measurements of the IVDF and Langmuir probe measurements of the plasma density. Keeping all other external source parameters constant and varying only the operating frequency of the helicon source HELIX, it was possible to initiate a transition from an unstable to a stable DL. As predicted, the upstream plasma density increased significantly when the stable DL appeared. The instabilities that prevented the formation of a stable DL at low helicon source operating frequency were studied with electrostatic double probes while simultaneously measuring the IVDF. Because the two methods typically used to measure IVDFs in low temperature plasmas require a large population of the target excited state (as in LIF) or are invasive and can be used only for ions in very low density plasmas (as in RFEA), another portion of this work focused on the development of a new method for the non-invasive measurement of IVDFs that is considerably more sensitive than LIF. Continuous wave cavity ring down spectroscopy (CW-CRDS) is a proven, ultrasensitive, cavity enhanced spectroscopic technique that has, in the past, been used to measure the absorption line shapes of particular atomic, ionic, and molecular transitions in test cells. Here we report the first CW-CRDS measurements of the Ar II ion velocity distribution function in a plasma along with conventional LIF measurements of the same ion state in the same plasma

    Analysis of bistable behavior and early warning signals of extinction in a class of predator-prey models

    Full text link
    In this paper, we develop a method of detecting an early warning signal of catastrophic population collapse in a class of predator-prey models with two species of predators competing for their common prey, where the prey evolves on a faster timescale than the predators. In a parameter regime near {\em{singular Hopf bifurcation}} of a coexistence equilibrium point, we assume that the class of models exhibits bistability between a periodic attractor and a boundary equilibrium point, where the invariant manifolds of the coexistence equilibrium play central roles in organizing the dynamics. To determine whether a solution that starts in a vicinity of the coexistence equilibrium approaches the periodic attractor or the point attractor, we reduce the equations to a suitable normal form, which is valid near the singular Hopf bifurcation, and study its geometric structure. A key component of our study includes an analysis of the transient dynamics, characterized by their rapid oscillations with a slow variation in amplitude, by applying a moving average technique. As a result of our analysis, we could devise a method for identifying early warning signals, significantly in advance, of a future crisis that could lead to extinction of one of the predators. The analysis is applied to the predator-prey model considered in [\emph{Discrete and Continuous Dynamical Systems - B} 2021, 26(10), pp. 5251-5279] and we find that our theory is in good agreement with the numerical simulations carried out for this model

    Faraday’s Principle And Air Travel In The Introductory Labs

    Get PDF
    We all know that we must improve the quality of teaching in science at all levels.  Not only physicists but also many students from other areas of study take the introductory physics courses in college.  Physics introductory laboratories (labs) can be one of the best tools to help these students understand applications of scientific principles that affect our lives. However, traditional labs are considered by many students, especially non-physics majors, as uninteresting due to the lack of real life applications.  In this study, we develop a lab experiment that uses air travel to understand one of the most important concepts in physics: the induced voltage per Faraday’s law.

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pppp collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    International audienceMid-rapidity production of π±\pi^{\pm}, K±\rm{K}^{\pm} and (pˉ\bar{\rm{p}})p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum (pTp_{\rm{T}}) range from hundreds of MeV/cc up to 20 GeV/cc. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0-90%. The comparison of the pTp_{\rm{T}}-integrated particle ratios, i.e. proton-to-pion (p/π\pi) and kaon-to-pion (K/π\pi) ratios, with similar measurements in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV show no significant energy dependence. Blast-wave fits of the pTp_{\rm{T}} spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/π\pi, K/π\pi) as a function of pTp_{\rm{T}} show pronounced maxima at pTp_{\rm{T}} \approx 3 GeV/cc in central Pb-Pb collisions. At high pTp_{\rm{T}}, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high pTp_{\rm{T}} and compatible with measurements at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily

    Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity (y<0.5\left| y\right| < 0.5) are measured in proton-proton collisions at s\sqrt{s} = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of KS0\mathrm{K}^{0}_{S}, Λ\Lambda , Ξ\Xi , and Ω\Omega increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV

    Measurement of the low-energy antideuteron inelastic cross section

    No full text
    In this Letter, we report the first measurement of the inelastic cross section for antideuteron-nucleus interactions at low particle momenta, covering a range of 0.3 ≤ p < 4 GeV/c. The measurement is carried out using p-Pb collisions at a center-of-mass energy per nucleon–nucleon pair of sNN\sqrt{s_{\rm NN}} = 5.02 TeV, recorded with the ALICE detector at the CERN LHC and utilizing the detector material as an absorber for antideuterons and antiprotons. The extracted raw primary antiparticle-to-particle ratios are compared to the results from detailed ALICE simulations based on the geant4 toolkit for the propagation of (anti)particles through the detector material. The analysis of the raw primary (anti)proton spectra serves as a benchmark for this study, since their hadronic interaction cross sections are well constrained experimentally. The first measurement of the inelastic cross section for antideuteron-nucleus interactions averaged over the ALICE detector material with atomic mass numbers ⟨A⟩ = 17.4 and 31.8 is obtained. The measured inelastic cross section points to a possible excess with respect to the Glauber model parametrization used in geant4 in the lowest momentum interval of 0.3 ≤ p < 0.47 GeV/c up to a factor 2.1. This result is relevant for the understanding of antimatter propagation and the contributions to antinuclei production from cosmic ray interactions within the interstellar medium. In addition, the momentum range covered by this measurement is of particular importance to evaluate signal predictions for indirect dark-matter searches

    Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at s \sqrt{s} = 5.02 and 13 TeV

    No full text
    International audienceThe production of J/ψ is measured as a function of charged-particle multiplicity at forward rapidity in proton-proton (pp) collisions at center-of-mass energies s \sqrt{s} = 5.02 and 13 TeV. The J/ψ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 < y < 4.0), whereas the charged-particle multiplicity density (dNch_{ch}/dη) is measured at midrapidity (|η| < 1). The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (dNch_{ch}/dη/〈dNch_{ch}/dη〉), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum (〈pT_{T}〉) of J/ψ in pp collisions exhibits an increasing trend as a function of dNch_{ch}/dη/〈dNch_{ch}/dη〉 showing a saturation towards high charged-particle multiplicities.[graphic not available: see fulltext
    corecore