67 research outputs found

    Two-Part Bio-Based Self-Healing Repair Agent for Cement-Based Mortar

    Get PDF
    Factors affecting durability of concrete structures are generally associated with each other. Due to its brittle nature, concrete can crack under stress and these cracks are one of the main reasons for a decrease in service life in concrete structures. Therefore, it is crucial to detect and recover microcracks, then to repair them as they were developed to wider cracks. Recent research in the field of concrete materials suggested that it might be possible to develop a smart cement-based material that is capable of remediate cracks by triggering biogenic calcium carbonate (CaCO3) precipitaton. This paper summarizes a study undertaken to investigate the self-healing efficiency of Sporosarcina pasteurii (S. pasteurii) cells immobilized on both diatomaceous earth and pumice, to remediate flexural cracks on mortar in early ages (28 days after mixing). To obtain a two-phase bio additive, half of the minerals were saturated with a nutrient medium consisting of urea, corn-steep liqueur(CSL) and calcium acetate and the cells with immobilized to the other half without nutrients. Screening of the healing process was done with ultrasonic pulse velocity (UPV) testing and stereomicroscopy. With this approach, the cracks on mortar surface were sealed and the water absorption capacity of the so-called self-healed mortar decreased compared to its counterpart cracked mortar samples

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (gamma-Fe2O3) and hematite (alpha-Fe2O3), using ferromagnetic resonance

    No full text
    We investigated intra/inter particle interactions in single domain size magnetite (Fe3O4), maghemite (gamma-Fe2O3) and hematite (alpha-Fe2O3) iron oxide particles. The magnetic analyses were done using vibrating sample magnetometer and magnetic resonance measurements that were taken from 5 to 300 K and from 120 to 300 K, respectively. The magnetic resonance analyses were done for the iron oxides, frozen under 5000 G fields in glycerol matrix. By changing the temperature, a change in resonance field lines was observed at each Fe3O4, gamma-Fe2O3 and alpha-Fe2O3 nanoparticles. However, the fits in resonant lines showed that Lande g values (spectroscopic splitting factor) stayed stable with temperature decrease. The thermal sensitivities that were determined from Lande g factors, revealed three dominant interactions on resonant lines namely; the exchange coupling in between Fe2+, Fe3+ and O (g(1) = 3.01 +/- 0.08), Fe3+ centers (1.88 +/- 0.03 <= g(2) <= 2.02 +/- 0.03, depending on iron oxide states) and flip flop of O ions in between ionic states of Fe2+-O (1) and Fe3+-O (2) (2.35 +/- 0.06 <= g(3) <= 2.44 +/- 0.06, depending on iron oxide states)

    Organizational politics and turnover: An empirical research from hospitality industry

    Get PDF
    The purpose of this study was to examine the effects of scarcity of resources, favoritism, and organizational support as antecedents on organizational politics perceptions of frontline staff and the effect of these perceptions on their turnover intention in Cypriot hotels as its setting. For this study, a total number of 140 usable questionnaires were collected from frontline staff who was defined as all frontline supervisors from the front office, food&beverage, guest relations, and housekeeping departments working in three, four and five star hotels in North Cyprus. The hypo-thesized relationships were tested using SPSS 18 version through path analysis. The model test results indicated that scarce resources and favoritism are significant determinants of organizational politics perceptions. On the other hand, organizational support was found to be negatively related with organizational politics. The empirical result also demonstrated that frontline supervisors’ politics perceptions exerted a positive effect on their turnover intentions. This research makes useful contributions to the current knowledge base by exclusively investigating the direct effect of favoritism on perceptions of organizational politics and indirect influence on turnover intention. Because favoritism practices have potential to paralyze the organizational justice and create distrustful working environment which makes real performers to engage in political games or quit the job

    Navigation Security Module with Real-Time Voice Command Recognition System

    No full text
    The real-time voice command recognition system used for this study, aims to increase the situational awareness, therefore the safety of navigation, related especially to the close manoeuvres of warships, and the courses of commercial vessels in narrow waters. The developed system, the safety of navigation that has become especially important in precision manoeuvres, has become controllable with voice command recognition-based software. The system was observed to work with 90.6% accuracy using Mel Frequency Cepstral Coefficients (MFCC) and Dynamic Time Warping (DTW) parameters and with 85.5% accuracy using Linear Predictive Coding (LPC) and DTW parameters

    A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (gamma-Fe2O3) and hematite (alpha-Fe2O3), using ferromagnetic resonance

    No full text
    We investigated intra/inter particle interactions in single domain size magnetite (Fe3O4), maghemite (gamma-Fe2O3) and hematite (alpha-Fe2O3) iron oxide particles. The magnetic analyses were done using vibrating sample magnetometer and magnetic resonance measurements that were taken from 5 to 300 K and from 120 to 300 K, respectively. The magnetic resonance analyses were done for the iron oxides, frozen under 5000 G fields in glycerol matrix. By changing the temperature, a change in resonance field lines was observed at each Fe3O4, gamma-Fe2O3 and alpha-Fe2O3 nanoparticles. However, the fits in resonant lines showed that Lande g values (spectroscopic splitting factor) stayed stable with temperature decrease. The thermal sensitivities that were determined from Lande g factors, revealed three dominant interactions on resonant lines namely; the exchange coupling in between Fe2+, Fe3+ and O (g(1) = 3.01 +/- 0.08), Fe3+ centers (1.88 +/- 0.03 <= g(2) <= 2.02 +/- 0.03, depending on iron oxide states) and flip flop of O ions in between ionic states of Fe2+-O (1) and Fe3+-O (2) (2.35 +/- 0.06 <= g(3) <= 2.44 +/- 0.06, depending on iron oxide states). (C) 2012 Elsevier B.V. All rights reserved
    corecore