299 research outputs found

    Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation

    Get PDF
    Prostaglandin E(2) (PGE(2)) synthesis modulates the response to radiation injury in the mouse intestinal epithelium through effects on crypt survival and apoptosis; however, the downstream signaling events have not been elucidated. WT mice receiving 16,16-dimethyl PGE(2) (dmPGE(2)) had fewer apoptotic cells per crypt than untreated mice. Apoptosis in Bax(–/–) mice receiving 12 Gy was approximately 50% less than in WT mice, and the ability of dmPGE(2) to attenuate apoptosis was lost in Bax(–/–) mice. Positional analysis revealed that apoptosis in the Bax(–/–) mice was diminished only in the bax-expressing cells of the lower crypts and that in WT mice, dmPGE(2) decreased apoptosis only in the bax-expressing cells. The HCT-116 intestinal cell line and Bax(–/–) HCT-116 recapitulated the apoptotic response of the mouse small intestine with regard to irradiation and dmPGE(2). Irradiation of HCT-116 cells resulted in phosphorylation of AKT that was enhanced by dmPGE(2) through transactivation of the EGFR. Inhibition of AKT phosphorylation prevented the reduction of apoptosis by dmPGE(2) following radiation. Transfection of HCT-116 cells with a constitutively active AKT reduced apoptosis in irradiated cells to the same extent as in nontransfected cells treated with dmPGE(2). Treatment with dmPGE(2) did not alter bax or bcl-x expression but suppressed bax translocation to the mitochondrial membrane. Our in vivo studies indicate that there are bax-dependent and bax-independent radiation-induced apoptosis in the intestine but that only the bax-dependent apoptosis is reduced by dmPGE(2). The in vitro studies indicate that dmPGE(2), most likely by signaling through the E prostaglandin receptor EP(2), reduces radiation-induced apoptosis through transactivation of the EGFR and enhanced activation of AKT and that this results in reduced bax translocation to the mitochondria

    Effects of Cigarette Smoking History on Neurocognitive Recovery Over 8 Months of Abstinence in Alcohol-Dependent Individuals

    Full text link
    BACKGROUND: This study compared the rate and extent of recovery on measures of learning and memory, processing speed, and working memory in treatment-seeking alcohol dependent individuals (ALC) who were never-smokers (nvsALC), former-smoker (fsALC), and active smokers (asALC), over the first 8 months of sustained abstinence from alcohol. Assessments after 1 week, 1 month, and 8 months of abstinence in ALC enabled a comparison of the rates of neurocognitive changes from 1 to 4 weeks versus 1 to 8 months of abstinence. METHODS: ALC and never-smoking controls were administered standardized measures of auditory-verbal and visuospatial learning and memory, processing speed, and working memory. Controls completed a baseline assessment and a follow-up approximately 9-months later. RESULTS: Over 8 months of abstinence, asALC showed poorer recovery than nvsALC on visuospatial learning, and both fsALC and asALC recovered less than nvsALC on processing speed measures. The corresponding recovery rates for the ALC group, as a whole, were greater from 1 to 4 weeks than from 1 to 8 months of abstinence; these findings were largely driven by improvements in nvsALC. The recovery levels for fsALC on most measures were similar to those in asALC. Additionally, over 8 months, asALC showed significantly less improvement with increasing age than nvsALC on measures of processing speed and learning and memory than nvsALC. At 8 months of abstinence, asALC were inferior to controls and nvsALC on multiple measures, fsALC performed worse than nvsALC on several tests, but nvsALC were not different from controls on any measure. CONCLUSIONS: Overall, ALC showed rapid improvement on measures of visuospatial learning and processing speed during the first month of abstinence from alcohol. Results also provide robust evidence that smoking status influenced the rate and level of neurocognitive recovery over 8 months of abstinence in this ALC cohort

    ATR‐101 inhibits cholesterol efflux and cortisol secretion by ATP‐binding cassette transporters, causing cytotoxic cholesterol accumulation in adrenocortical carcinoma cells

    Full text link
    Background and PurposeTo further the development of new agents for the treatment of adrenocortical carcinoma (ACC), we characterized the molecular and cellular mechanisms of cytotoxicity by the adrenalytic compound ATR‐101 (PD132301‐02).Experimental ApproachWe compared the effects of ATR‐101, PD129337, and ABC transporter inhibitors on cholesterol accumulation and efflux, on cortisol secretion, on ATP levels, and on caspase activation in ACC‐derived cell lines. We examined the effects of these compounds in combination with methyl‐β‐cyclodextrin or exogenous cholesterol to determine the roles of altered cholesterol levels in the effects of these compounds.Key ResultsATR‐101 caused cholesterol accumulation, ATP depletion, and caspase activation within 30 minutes after addition to ACC‐derived cells, whereas PD129337 did not. Suppression of cholesterol accumulation by methyl‐β‐cyclodextrin or exogenous cholesterol, prevented ATP depletion and caspase activation by ATR‐101. ATR‐101 blocked cholesterol efflux and cortisol secretion, suggesting that it inhibited ABCA1, ABCG1, and MDR1 transporters. Combinations of ABCA1, ABCG1, and MDR1 inhibitors were also cytotoxic. Combinations of ATR‐101 with inhibitors of ABCG1, MDR1, or mitochondrial functions had increased cytotoxicity. Inhibitors of steroidogenesis reduced ATP depletion by ATR‐101, whereas U18666A enhanced cholesterol accumulation and ATP depletion together with ATR‐101. ATR‐101 repressed ABCA1, ABCG1, and IDOL transcription by mechanisms that were distinct from the mechanisms that caused cholesterol accumulation.Conclusions and ImplicationsInhibition of multiple ABC transporters and the consequent accumulation of cholesterol mediated the cytotoxicity of ATR‐101. Compounds that replicate these effects in tumours are likely to be useful in the treatment of ACC.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138270/1/bph13951-sup-0001-supplementary_material.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138270/2/bph13951_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138270/3/bph13951.pd

    White matter changes in microstructure associated with a maladaptive response to stress in rats

    Get PDF
    In today's society, every individual is subjected to stressful stimuli with different intensities and duration. This exposure can be a key trigger in several mental illnesses greatly affecting one's quality of life. Yet not all subjects respond equally to the same stimulus and some are able to better adapt to them delaying the onset of its negative consequences. The neural specificities of this adaptation can be essential to understand the true dynamics of stress as well as to design new approaches to reduce its consequences. In the current work, we employed ex vivo high field diffusion magnetic resonance imaging (MRI) to uncover the differences in white matter properties in the entire brain between Fisher 344 (F344) and Sprague-Dawley (SD) rats, known to present different responses to stress, and to examine the effects of a 2-week repeated inescapable stress paradigm. We applied a tract-based spatial statistics (TBSS) analysis approach to a total of 25 animals. After exposure to stress, SD rats were found to have lower values of corticosterone when compared with F344 rats. Overall, stress was found to lead to an overall increase in fractional anisotropy (FA), on top of a reduction in mean and radial diffusivity (MD and RD) in several white matter bundles of the brain. No effect of strain on the white matter diffusion properties was observed. The strain-by-stress interaction revealed an effect on SD rats in MD, RD and axial diffusivity (AD), with lower diffusion metric levels on stressed animals. These effects were localized on the left side of the brain on the external capsule, corpus callosum, deep cerebral white matter, anterior commissure, endopiriform nucleus, dorsal hippocampus and amygdala fibers. The results possibly reveal an adaptation of the SD strain to the stressful stimuli through synaptic and structural plasticity processes, possibly reflecting learning processes.We thank Neurospin (high field MRI center CEA Saclay) for providing its support for MRI acquisition. JB was supported by grants from Fondation pour la Recherche Médicale (FRM) and Groupe Pasteur Mutualité (GPM). This work was supported by a grant from ANR (SIGMA). This work was performed on a platform of France Life Imaging (FLI) network partly funded by the grant ANR-11-INBS-0006. This work and RM were supported by a fellowship of the project FCT-ANR/NEU-OSD/0258/2012 founded by FCT/MEC (www.fct.pt) and by Fundo Europeu de Desenvolvimento Regional (FEDER). AC was supported by a grant from the Fondation NRJ.info:eu-repo/semantics/publishedVersio

    The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously found that TLR4-deficient (TLR4-/-) mice demonstrate decreased expression of mucosal PGE <sub>2 </sub>and are protected against colitis-associated neoplasia. However, it is still unclear whether PGE <sub>2 </sub>is the central factor downstream of TLR4 signaling that promotes intestinal tumorigenesis. To further elucidate critical downstream pathways involving TLR4-mediated intestinal tumorigenesis, we examined the effects of exogenously administered PGE <sub>2 </sub>in TLR4-/- mice to see if PGE <sub>2 </sub>bypasses the protection from colitis-associated tumorigenesis.</p> <p>Method</p> <p>Mouse colitis-associated neoplasia was induced by azoxymethane (AOM) injection followed by two cycles of dextran sodium sulfate (DSS) treatment. Two different doses of PGE <sub>2 </sub>(high dose group, 200 μg, n = 8; and low dose group, 100 μg, n = 6) were administered daily during recovery period of colitis by gavage feeding. Another group was given PGE <sub>2 </sub>during DSS treatment (200 μg, n = 5). Inflammation and dysplasia were assessed histologically. Mucosal Cox-2 and amphiregulin (AR) expression, prostanoid synthesis, and EGFR activation were analyzed.</p> <p>Results</p> <p>In control mice treated with PBS, the average number of tumors was greater in WT mice (n = 13) than in TLR4-/- mice (n = 7). High dose but not low dose PGE <sub>2 </sub>treatment caused an increase in epithelial proliferation. 28.6% of PBS-treated TLR4-/- mice developed dysplasia (tumors/animal: 0.4 ± 0.2). By contrast, 75.0% (tumors/animal: 1.5 ± 1.2, P < 0.05) of the high dose group and 33.3% (tumors/animal: 0.3 ± 0.5) of the low dose group developed dysplasia in TLR4-/- mice. Tumor size was also increased by high dose PGE <sub>2 </sub>treatment. Endogenous prostanoid synthesis was differentially affected by PGE <sub>2 </sub>treatment during acute and recovery phases of colitis. Exogenous administration of PGE <sub>2 </sub>increased colitis-associated tumorigenesis but this only occurred during the recovery phase. Lastly, PGE <sub>2 </sub>treatment increased mucosal expression of AR and Cox-2, thus inducing EGFR activation and forming a positive feedback mechanism to amplify mucosal Cox-2.</p> <p>Conclusions</p> <p>These results highlight the importance of PGE <sub>2 </sub>as a central downstream molecule involving TLR4-mediated intestinal tumorigenesis.</p

    Serial longitudinal magnetic resonance imaging data indicate non-linear regional gray matter volume recovery in abstinent alcohol-dependent individuals

    Full text link
    The trajectory of regional volume changes during the first year of sustained abstinence in those recovering from an alcohol use disorder is unclear because previous research typically employed only two assessment points. To better understand the trajectory of regional brain volume recovery in treatment-seeking alcohol-dependent individuals (ALC), regional brain volumes were measured after 1 week, 1 month and 7.5 months of sustained abstinence via magnetic resonance imaging at 1.5-T. ALC showed significant volume increases in frontal, parietal and occipital gray matter (GM) and white matter (WM), total cortical GM and total lobar WM, thalamus and cerebellum, and decreased ventricular volume over 7.5 months of abstinence. Volume increases in regional GM were significantly greater over 1 week to 1 month than from 1 month to 7.5 months of abstinence, indicating a non-linear rate of change in regional GM over 7.5 months. Overall, regional lobar WM showed linear volume increases over 7.5 months. With increasing age, smoking ALC showed lower frontal and total cortical GM volume recovery than non-smoking ALC. Despite significant volume increases, ALC showed smaller GM volumes in all regions, except the frontal cortex, than controls after 7.5 months of abstinence. ALC and controls showed no regional WM volume differences at any assessment point. In non-smoking ALC only, increasing regional GM and WM volumes were related to improving processing speed. Findings may indicate a differential rate of recovery of cell types/cellular components contributing to GM and WM volume during early abstinence, and that GM volume deficits persist after 7.5 months of sustained sobriety in this ALC cohort. Regional brain volume recovery in abstinent alcohol dependent individuals (ALC) was measured via magnetic resonance imaging. ALC showed significant volume increases in frontal, parietal, and occipital gray matter (GM), and total cortical GM over 7.5-months of abstinence; these volume changes were greater over 1-week to 1-month than from 1-month to 7.5-months of abstinence; only frontal GM recovered to the level of controls. Smoking ALC showed less recovery in frontal and total cortical GM volume with increasing age than non-smoking ALC

    The Role of Inflammatory Mediators in the Pathogenesis of Otitis Media and Sequelae

    Get PDF
    This review deals with the characteristics of various inflammatory mediators identified in the middle ear during otitis media and in cholesteatoma. The role of each inflammatory mediator in the pathogenesis of otitis media and cholesteatoma has been discussed. Further, the relation of each inflammatory mediator to the pathophysiology of the middle and inner ear along with its mechanisms of pathological change has been described. The mechanisms of hearing loss including sensorineural hearing loss (SNHL) as a sequela of otitis media are also discussed. The passage of inflammatory mediators through the round window membrane into the scala tympani is indicated. In an experimental animal model, an application of cytokines and lipopolysaccharide (LPS), a bacterial toxin, on the round window membrane induced sensorineural hearing loss as identified through auditory brainstem response threshold shifts. An increase in permeability of the blood-labyrinth barrier (BLB) was observed following application of these inflammatory mediators and LPS. The leakage of the blood components into the lateral wall of the cochlea through an increase in BLB permeability appears to be related to the sensorineural hearing loss by hindering K+ recycling through the lateral wall disrupting the ion homeostasis of the endolymph. Further studies on the roles of various inflammatory mediators and bacterial toxins in inducing the sensorineumral hearing loss in otitis media should be pursued

    Consulting

    Get PDF
    Issued as Final report, Project no. A-234
    corecore