22 research outputs found

    Discourses of positionality and the challenges of democratization in the global south: The case of Nepal and Cameroon

    Get PDF
    In this article, we argue that to conceptually and empirically grasp the dynamics and challenges of processes of civic participation, i.e., the deliberation and empowerment of disenfranchised and marginalized populations in the Global South, communication for social change scholars need to pay more attention to three issues: the quality of citizens’ self-perceptions in relation to their local milieu, inter-citizen perceptions and relations at the local level and lastly, the attendant consequences of these on citizens’ sense of efficacy. To grasp and comprehend the interplay of these three issues, we propose the adoption of Floya Anthias’ concept of narratives of location and positionality and demonstrate the heuristic vitality of this notion through a discussion of some local discourses of positionality in Nepal and Cameroon

    Metabotropic glutamate receptors as drug targets for the treatment of absence epilepsy

    Get PDF
    Metabotropic glutamate (mGlu) receptors are expressed in key regions of the cortex and the thalamus and are known to regulate spike and wave discharges (SWDs), the electroclinical hallmarks of absence seizures. Recent preclinical studies have highlighted the therapeutic potential of selective group I and III mGlu receptor subtype allosteric modulators, which can suppress pathological SWDs. Of particular interest are positive allosteric modulators (PAMs) for mGlu5 receptors, as they currently show the most promise as novel anti-absence epilepsy drugs. The rational design of novel selective positive and negative allosteric mGlu modulators, especially for the mGlu5 receptor, has been made possible following the recent crystallographic structure determination of group I mGlu receptors. Our current knowledge of the role of different mGlu receptor subtypes in absence epilepsy is outlined in this article. [Abstract copyright: Copyright © 2018. Published by Elsevier Ltd.

    MGluR5 Mediates the Interaction between Late-LTP, Network Activity, and Learning

    Get PDF
    Hippocampal synaptic plasticity and learning are strongly regulated by metabotropic glutamate receptors (mGluRs) and particularly by mGluR5. Here, we investigated the mechanisms underlying mGluR5-modulation of these phenomena. Prolonged pharmacological blockade of mGluR5 with MPEP produced a profound impairment of spatial memory. Effects were associated with 1) a reduction of mGluR1a-expression in the dentate gyrus; 2) impaired dentate gyrus LTP; 3) enhanced CA1-LTP and 4) suppressed theta (5–10 Hz) and gamma (30–100 Hz) oscillations in the dentate gyrus. Allosteric potentiation of mGluR1 after mGluR5 blockade significantly ameliorated dentate gyrus LTP, as well as suppression of gamma oscillatory activity. CA3-lesioning prevented MPEP effects on CA1-LTP, suggesting that plasticity levels in CA1 are driven by mGluR5-dependent synaptic and network activity in the dentate gyrus. These data support the hypothesis that prolonged mGluR5-inactivation causes altered hippocampal LTP levels and network activity, which is mediated in part by impaired mGluR1-expression in the dentate gyrus. The consequence is impairment of long-term learning

    The role of the melatoninergic system in epilepsy and comorbid psychiatric disorders

    Get PDF
    Abstract There is emerging evidence of the beneficial role of the melatonin system in a wide range of psychiatric and neurologic disorders, including anxiety, depression, and epilepsy. Although melatoninergic drugs have chronobiotic and antioxidant properties that positively influence circadian rhythm desynchronization and neuroprotection in neurodegenerative disorders, studies examining the use of melatonin for epilepsy's comorbid psychiatric and neurological symptomatology are still limited. Preclinical and clinical findings on the beneficial effects of the melatonin system on anxiety, depression, and epilepsy suggest that melatoninergic compounds might be effective in treating comorbid behavioral complications in epilepsy beyond regulation of a disturbed sleep-wake cycle

    The anti-absence effect of mGlu5 receptor amplification with VU0360172 is maintained during and after antiepileptogenesis

    Get PDF
    Ethosuximide (ETX) has become the drug of choice in the treatment of patients with absence seizures taking into account both its efficacy, tolerability and antiepileptogenic properties. However, 47% of subjects treated with ETX failed in therapy, and most antiepileptic drugs have cognitive side effects. VU0360172, a positive allosteric modulator (PAM) of mGluR5, acutely and chronically administered decreased seizures dose dependently in rats of the WAG/Rij strain, a genetic absence model. Here it is investigated whether anti-epileptogenesis induced by ETX alters the sensitivity of VU0360172 as an anti-absence drug, and cognition is affected during and after chronic ETX treatment. Method: Male WAG/Rij rats were chronically treated with ETX for 4 months. EEG’s were recorded during and after treatment as well as challenged with VU0360172. Rats were also periodically exposed to a cue discrimination learning task in a Y-maze. mGlu5 receptors were quantified with Western Blot. Results: Antiepileptogenesis was successfully induced by ETX and VU0360172 showed a time and dose dependent anti-absence action. However, chronic ETX treated rats showed a decrease in absences both during and after the end treatment, without clear time and dose related effects. The decrease of sensitivity for VU0360172 was not accompanied by a change in mGluR5 expression in cortex and thalamus. Chronic ETX enhanced motivation to collect sucrose pallets and this was followed by an increase in cued discrimination learning. It is concluded that VU0360172 keeps its antiabsence effects after chronic treatment. Moreover, its differential effects in the two groups cannot be explained by a simple receptor down regulation suggesting a more downstream interaction between ETX and mGluR5. The cognitive enhancing effects of ETX, as found at the end of the experiment might be mediated to the antidepressant action of ETX as expressed by an increase in the rewarding properties of sucrose pallets

    Alterations in the α2 δ ligand, thrombospondin-1, in a rat model of spontaneous absence epilepsy and in patients with idiopathic/genetic generalized epilepsies

    Get PDF
    Objectives Thrombospondins, which are known to interact with the α2δ subunit of voltage-sensitive calcium channels to stimulate the formation of excitatory synapses, have recently been implicated in the process of epileptogenesis. No studies have been so far performed on thrombospondins in models of absence epilepsy. We examined whether expression of the gene encoding for thrombospondin-1 was altered in the brain of WAG/Rij rats, which model absence epilepsy in humans. In addition, we examined the frequency of genetic variants of THBS1 in a large cohort of children affected by idiopathic/genetic generalized epilepsies (IGE/GGEs). Methods We measured the transcripts of thrombospondin-1 and α2δ subunit, and protein levels of α2δ, Rab3A, and the vesicular glutamate transporter, VGLUT1, in the somatosensory cortex and ventrobasal thalamus of presymptomatic and symptomatic WAG/Rij rats and in two control strains by real-time polymerase chain reaction (PCR) and immunoblotting. We examined the genetic variants of THBS1 and CACNA2D1 in two independent cohorts of patients affected by IGE/GGE recruited through the Genetic Commission of the Italian League Against Epilepsy (LICE) and the EuroEPINOMICS-CoGIE Consortium. Results Thrombospondin-1 messenger RNA (mRNA) levels were largely reduced in the ventrobasal thalamus of both presymptomatic and symptomatic WAG/Rij rats, whereas levels in the somatosensory cortex were unchanged. VGLUT1 protein levels were also reduced in the ventrobasal thalamus of WAG/Rij rats. Genetic variants of THBS1 were significantly more frequent in patients affected by IGE/GGE than in nonepileptic controls, whereas the frequency of CACNA2D1 was unchanged. Significance These findings suggest that thrombospondin-1 may have a role in the pathogenesis of IGE/GGEs

    Introduction

    No full text

    Epilogue: Beyond methodological consolidation

    No full text
    corecore