86 research outputs found

    Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress

    Get PDF
    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that plays a crucial role in attenuating ER stress responses. Although MANF is indispensable for the survival and function of mouse beta-cells, its precise role in human beta-cell development and function is unknown. In this study, we show that lack of MANF in humans results in diabetes due to increased ER stress, leading to impaired beta-cell function. We identified two patients from different families with childhood diabetes and a neurodevelopmental disorder associated with homozygous loss-of-function mutations in the MANF gene. To study the role of MANF in human beta-cell development and function, we knocked out the MANF gene in human embryonic stem cells and differentiated them into pancreatic endocrine cells. Loss of MANF induced mild ER stress and impaired insulin-processing capacity of beta-cells in vitro. Upon implantation to immunocompromised mice, the MANF knockout grafts presented elevated ER stress and functional failure, particularly in recipients with diabetes. By describing a new form of monogenic neurodevelopmental diabetes syndrome caused by disturbed ER function, we highlight the importance of adequate ER stress regulation for proper human beta-cell function and demonstrate the crucial role of MANF in this process.Peer reviewe

    Guidelines for acute management of hyperammonemia in the Middle East region

    Full text link
    BACKGROUND: Hyperammonemia is a life-threatening event that can occur at any age. If treated, the early symptoms in all age groups could be reversible. If untreated, hyperammonemia could be toxic and cause irreversible brain damage to the developing brain. OBJECTIVE: There are major challenges that worsen the outcome of hyperammonemic individuals in the Middle East. These include: lack of awareness among emergency department physicians about proper management of hyperammonemia, strained communication between physicians at primary, secondary, and tertiary hospitals, and shortage of the medications used in the acute management of hyperammonemia. Therefore, the urge to develop regional guidelines is extremely obvious. METHOD: We searched PubMed and Embase databases to include published materials from 2011 to 2014 that were not covered by the European guidelines, which was published in 2012. We followed the process of a Delphi conference and involved one preliminary meeting and two follow-up meetings with email exchanges between the Middle East Hyperammonemia and Urea Cycle Disorders Scientific Group regarding each draft of the manuscript. RESULTS AND DISCUSSION: We have developed consensus guidelines based on the highest available level of evidence. The aim of these guidelines is to homogenize and harmonize the treatment protocols used for patients with acute hyperammonemia, and to provide a resource to not only metabolic physicians, but also physicians who may come in contact with individuals with acute hyperammonemia. CONCLUSION: These suggested guidelines aim to ease the challenges faced by physicians dealing with acute hyperammonemia in the region. In addition, guidelines have demonstrated useful collaboration between experts in the region, and provides information that will hopefully improve the outcomes of patients with acute hyperammonemia

    Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy.

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes

    Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder

    Get PDF
    Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched-chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here, we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation, and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function

    Natural history, with clinical, biochemical and molecular characterization, of classical homocystinuria in the Qatari population

    Get PDF
    Classical homocystinuria (HCU) is the most common inborn error of metabolism in Qatar, with an incidence of 1:1800, and is caused by the Qatari founder p.R336C mutation in the CBS gene. This study describes the natural history and clinical manifestations of HCU in the Qatari population. A single center study was performed between 2016 and 2017 in 126 Qatari patients, from 82 families. Detailed clinical and biochemical data were collected and Stanford-Binet intelligence, quality of life and adherence to treatment assessments were conducted prospectively. Patients were assigned to one of three groups, according to mode of diagnosis: 1) Late Diagnosis Group (LDG), 2) Family Screening Group (FSG), and 3) Newborn Screening Group (NSG). Of the 126 patients, 69 (55%) were in the LDG, 44 (35%) in the NSG, and 13 (10%) in the FSG. The leading factors for diagnosis in the LDG were ocular manifestations (49%), neurological manifestations (45%), thromboembolic events (4%), and hyperactivity and behavioral changes (1%). Both FSG and NSG groups were asymptomatic at time of diagnosis. NSG had significantly higher IQ, QoL, and adherence values compared with the LDG. The LDG and FSG had significantly higher Met levels than the NSG. The LDG also had significantly higher tHcy levels than the NSG and FSG. Regression analysis confirmed these results even when adjusting for age at diagnosis, current age or adherence. These findings increase understanding of the natural history of HCU and highlight the importance of early diagnosis and treatment. This article is protected by copyright. All rights reserved.Qatar National Research Fund , Grant/Award Number: 7‐355‐3‐08

    The phenotype of floating-harbor syndrome:clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background\ud Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.\ud \ud Methods and results\ud Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.\ud \ud Conclusions\ud This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.The authors would like to thank the families for their cooperation and permission to publish these findings. SdM would like to thank Barto Otten. Funding was provided by the Government of Canada through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049), by Genome QuĂ©bec and Genome British Columbia, and the Manton Center for Orphan Disease Research at Children’s Hospital Boston. KMB is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. AD is supported by NIH grant K23HD073351. BBAdV and HGB were financially supported by the AnEUploidy project (LSHG-CT-2006-37627). This work was selected for study by the FORGE Canada Steering Committee, which consists of K. Boycott (University of Ottawa), J. Friedman (University of British Columbia), J. Michaud (University of Montreal), F. Bernier (University of Calgary), M. Brudno (University of Toronto), B. Fernandez (Memorial University), B. Knoppers (McGill University), M. Samuels (UniversitĂ© de MontrĂ©al), and S. Scherer (University of Toronto). We thank the Galliera Genetic Bank - “Telethon Genetic Biobank Network” supported by Italian Telethon grants (project no. GTB07001) for providing us with specimens

    The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from

    Characterization of greater middle eastern genetic variation for enhanced disease gene discovery

    Get PDF
    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics
    • 

    corecore