161 research outputs found

    Estimating the phase in ground-based interferometry: performance comparison between single-mode and multimode schemes

    Full text link
    In this paper we compare the performance of multi and single-mode interferometry for the estimation of the phase of the complex visibility. We provide a theoretical description of the interferometric signal which enables to derive the phase error in presence of detector, photon and atmospheric noises, for both multi and single-mode cases. We show that, despite the loss of flux occurring when injecting the light in the single-mode component (i.e. single-mode fibers, integrated optics), the spatial filtering properties of such single-mode devices often enable higher performance than multimode concepts. In the high flux regime speckle noise dominated, single-mode interferometry is always more efficient, and its performance is significantly better when the correction provided by adaptive optics becomes poor, by a factor of 2 and more when the Strehl ratio is lower than 10%. In low light level cases (detector noise regime), multimode interferometry reaches better performance, yet the gain never exceeds 20%, which corresponds to the percentage of photon loss due to the injection in the guides. Besides, we demonstrate that single-mode interferometry is also more robust to the turbulence in both cases of fringe tracking and phase referencing, at the exception of narrow field of views (<1 arcsec).Comment: 9 pages (+ 11 online material appendices) -- 8 Figures. Accepted in A&

    AMBER on the VLTI: data processing and calibration issues

    Get PDF
    We present here the current performances of the AMBER / VLTI instrument for standard use and compare these with the offered modes of the instrument. We show that the instrument is able to reach its specified precision only for medium and high spectral resolution modes, differential observables and bright objects. For absolute observables, the current achievable accuracy is strongly limited by the vibrations of the Unit Telescopes, and also by the observing procedure which does not take into account the night-long transfer function monitoring. For low-resolution mode, the current limitation is more in the data reduction side, since several effects negligible at medium spectral resolution are not taken into account in the current pipeline. Finally, for faint objects (SNR around 1 per spectral channel), electromagnetic interferences in the VLTI interferometric laboratory with the detector electronics prevents currently to get unbiased measurements. Ideas are under study to correct in the data processing side this effect, but a hardware fix should be investigated seriously since it limits seriously the effective limiting magnitude of the instrument.Comment: 10 page

    Cerebral venous hemodynamic abnormalities in episodic and chronic migraine

    Get PDF
    Alterations of cerebral venous drainage have been demonstrated in chronic migraine (CM), suggesting that cerebral venous hemodynamic abnormalities (CVHAs) play a role in this condition. The aim of the present study was to look for a correlation between CM and CVHAs. We recruited 33 subjects suffering from CM with or without analgesic overuse, 29 episodic migraine (EM) patients with or without aura, and 21 healthy subjects as controls (HCs). CVHAs were evaluated by transcranial and extracranial echo-color Doppler evaluation of five venous hemodynamic parameters. CVHAs were significantly more frequent in the CM and EM patients than in the HCs. In the migraine patients, CVHAs were not correlated with clinical features. Cerebral venous hemodynamic abnormalities in episodic and chronic migraine The significantly greater frequency of CVHAs observed in the migraineurs may reflect a possible relationship between migraine and these abnormalities. Prospective longitudinal studies are needed to investigate whether CVHAs have a role in the processes of migraine chronification

    First result with AMBER+FINITO on the VLTI: The high-precision angular diameter of V3879 Sgr

    Full text link
    Our goal is to demonstrate the potential of the interferometric AMBER instrument linked with the Very Large Telescope Interferometer (VLTI) fringe-tracking facility FINITO to derive high-precision stellar diameters. We use commissioning data obtained on the bright single star V3879 Sgr. Locking the interferometric fringes with FINITO allows us to record very low contrast fringes on the AMBER camera. By fitting the amplitude of these fringes, we measure the diameter of the target in three directions simultaneously with an accuracy of 25 micro-arcseconds. We showed that V3879 Sgr has a round photosphere down to a sub-percent level. We quickly reached this level of accuracy because the technique used is independent from absolute calibration (at least for baselines that fully span the visibility null). We briefly discuss the potential biases found at this level of precision. The proposed AMBER+FINITO instrumental setup opens several perspectives for the VLTI in the field of stellar astrophysics, like measuring with high accuracy the oblateness of fast rotating stars or detecting atmospheric starspots

    Data reduction for the AMBER instrument

    Get PDF
    We present here the general formalism and data processing steps used in the data reduction pipeline of the AMBER instrument. AMBER is a three-telescope interferometric beam combiner in J, H and K bands installed at ESO\'s Very Large Telescope Interferometer. The fringes obtained on the 3 pairs of telescopes are spatially coded and spectrally dispersed. These are monitored on a 512x512 infrared camera at frame rates up to 100 frames per second, and this paper presents the algorithm used to retrieve the complex coherent visibility of the science target and the subsequent squared visibility, dierential phase and phase closure on the 3 bases and in the 3 spectral bands available in AMBER

    Spatially resolving the hot CO around the young Be star 51 Ophiuchi

    Get PDF
    51 Oph is one of the few young Be stars displaying a strong CO overtone emission at 2.3 microns in addition to the near infrared excess commonly observed in this type of stars. In this paper we first aim to locate the CO bandheads emitting region. Then, we compare its position with respect to the region emitting the near infrared continuum. We have observed 51 Oph with AMBER in low spectral resolution (R=35), and in medium spectral resolution (R=1500) centered on the CO bandheads. The medium resolution AMBER observations clearly resolve the CO bandheads. Both the CO bandheads and continuum emissions are spatially resolved by the interferometer. Using simple analytical ring models to interpret the measured visibilities, we find that the CO bandheads emission region is compact, located at 0.150.040.070.15_{-0.04}^{0.07}AU from the star, and that the adjacent continuum is coming from a region further away 0.250.030.060.25_{-0.03}^{0.06}AU. These results confirm the commonly invoked scenario in which the CO bandheads originate in a dust free hot gaseous disk. Furthermore, the continuum emitting region is closer to the star than the dust sublimation radius (by at least a factor two) and we suggest that hot gas inside the dust sublimation radius significantly contributes to the observed 2 μ\mum continuum emission.Comment: 5 pages, 5 figure

    The 2008 outburst in the young stellar system ZCMa: I. Evidence of an enhanced bipolar wind on the AU-scale

    Get PDF
    Accretion is a fundamental process in star formation. Although the time evolution of accretion remains a matter of debate, observations and modelling studies suggest that episodic outbursts of strong accretion may dominate the formation of the protostar. Observing young stellar objects during these elevated accretion states is crucial to understanding the origin of unsteady accretion. ZCMa is a pre-main-sequence binary system composed of an embedded Herbig Be star, undergoing photometric outbursts, and a FU Orionis star. The Herbig Be component recently underwent its largest optical photometric outburst detected so far. We aim to constrain the origin of this outburst by studying the emission region of the HI Brackett gamma line, a powerful tracer of accretion/ejection processes on the AU-scale in young stars. Using the AMBER/VLTI instrument at spectral resolutions of 1500 and 12 000, we performed spatially and spectrally resolved interferometric observations of the hot gas emitting across the Brackett gamma emission line, during and after the outburst. From the visibilities and differential phases, we derive characteristic sizes for the Brackett gamma emission and spectro-astrometric measurements across the line, with respect to the continuum. We find that the line profile, the astrometric signal, and the visibilities are inconsistent with the signature of either a Keplerian disk or infall of matter. They are, instead, evidence of a bipolar wind, maybe partly seen through a disk hole inside the dust sublimation radius. The disappearance of the Brackett gamma emission line after the outburst suggests that the outburst is related to a period of strong mass loss rather than a change of the extinction along the line of sight. Based on these conclusions, we speculate that the origin of the outburst is an event of enhanced mass accretion, similar to those occuring in EX Ors and FU Ors.Comment: Accepted for publication in Astronomy and Astrophysics Letter

    Integrated optics for astronomical interferometry - VI. Coupling the light of the VLTI in K band

    Get PDF
    Our objective is to prove that integrated optics (IO) is not only a good concept for astronomical interferometry but also a working technique with high performance. We used the commissioning data obtained with the dedicated K-band integrated optics two-telescope beam combiner which now replaces the fiber coupler MONA in the VLTI/VINCI instrument. We characterize the behaviour of this IO device and compare its properties to other single mode beam combiner like the previously used MONA fiber coupler. The IO combiner provides a high optical throughput, a contrast of 89% with a night-to-night stability of a few percent. Even if a dispersive phase is present, we show that it does not bias the measured Fourier visibility estimate. An upper limit of 0.005 for the cross-talk between linear polarization states has been measured. We take advantage of the intrinsic contrast stability to test a new astronomical prodecure for calibrating diameters of simple stars by simultaneously fitting the instrumental contrast and the apparent stellar diameters. This method reaches an accuracy with diameter errors of the order of previous ones but without the need of an already known calibrator. These results are an important step of integrated optics and paves the road to incoming imaging interferometer projects

    The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER spectro-interferometry

    Get PDF
    To trace the accretion and outflow processes around YSOs, diagnostic spectral lines such as the BrG 2.166 micron line are widely used, although due to a lack of spatial resolution, the origin of the line emission is still unclear. Employing the AU-scale spatial resolution which can be achieved with infrared long-baseline interferometry, we aim to distinguish between theoretical models which associate the BrG line emission with mass infall or mass outflow processes. Using the VLTI/AMBER instrument, we spatially and spectrally (R=1500) resolved the inner environment of five Herbig Ae/Be stars (HD163296, HD104237, HD98922, MWC297, V921Sco) in the BrG emission line as well as in the adjacent continuum. All objects (except MWC297) show an increase of visibility within the BrG emission line, indicating that the BrG-emitting region in these objects is more compact than the dust sublimation radius. For HD98922, our quantitative analysis reveals that the line-emitting region is compact enough to be consistent with the magnetospheric accretion scenario. For HD163296, HD104237, MWC297, and V921Sco we identify a stellar wind or a disk wind as the most likely line-emitting mechanism. We search for general trends and find that the size of the BrG-emitting region does not seem to depend on the basic stellar parameters, but correlates with the H-alpha line profile shape. We find evidence for at least two distinct BrG line-formation mechanisms. Stars with a P-Cygni H-alpha line profile and a high mass-accretion rate seem to show particularly compact BrG-emitting regions (R_BrG/R_cont<0.2), while stars with a double-peaked or single-peaked H-alpha-line profile show a significantly more extended BrG-emitting region (0.6<R_BrG/R_cont<1.4), possibly tracing a stellar wind or a disk wind.Comment: 20 pages; 11 figures; Accepted by A&A; a high quality version of the paper can be obtained at http://www.skraus.eu/papers/kraus.HAeBe-BrGsurvey.pd

    Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER

    Full text link
    We present the first 1-D aperture synthesis imaging of the red supergiant Betelgeuse in the individual CO first overtone lines with VLTI/AMBER. The reconstructed 1-D projection images reveal that the star appears differently in the blue wing, line center, and red wing of the individual CO lines. The 1-D projection images in the blue wing and line center show a pronounced, asymmetrically extended component up to ~1.3 stellar radii, while those in the red wing do not show such a component. The observed 1-D projection images in the lines can be reasonably explained by a model in which the CO gas within a region more than half as large as the stellar size is moving slightly outward with 0--5 km s^-1, while the gas in the remaining region is infalling fast with 20--30 km s^-1. A comparison between the CO line AMBER data taken in 2008 and 2009 shows a significant time variation in the dynamics of the CO line-forming region in the photosphere and the outer atmosphere. In contrast to the line data, the reconstructed 1-D projection images in the continuum show only a slight deviation from a uniform disk or limb-darkened disk. We derive a uniform-disk diameter of 42.05 +/- 0.05 mas and a power-law-type limb-darkened disk diameter of 42.49 +/- 0.06 mas and a limb-darkening parameter of (9.7 +/- 0.5) x 10^{-2}. This latter angular diameter leads to an effective temperature of 3690 +/- 54 K for the continuum-forming layer. These diameters confirm that the near-IR size of Betelgeuse was nearly constant over the last 18 years, in marked contrast to the recently reported noticeable decrease in the mid-IR size. The continuum data taken in 2008 and 2009 reveal no or only marginal time variations, much smaller than the maximum variation predicted by the current 3-D convection simulations.Comment: 21 pages, 12 figures, accepted for publication in Astronomy and Astrophysic
    corecore