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1 Introduction

We present here the current performances of the AMBER / VLTI instrument
for standard use and compare these with the offered modes of the instrument.
We show that the instrument is able to reach its specified precision only
for medium and high spectral resolution modes, differential observables and
bright objects.

For absolute observables, the current achievable accuracy is strongly lim-
ited by the vibrations of the Unit Telescopes, and also by the observing pro-
cedure which does not take into account the night-long transfer function mon-
itoring.

For low-resolution mode, the current limitation is more in the data reduc-
tion side, since several effects negligible at medium spectral resolution are not
taken into account in the current pipeline.

Finally, for faint objects (SNR around 1 per spectral channel), electromag-
netic interferences in the VLTI interferometric laboratory with the detector
electronics prevents currently to get unbiased measurements. Ideas are under
study to correct in the data processing side this effect, but a hardware fix
should be investigated seriously since it limits seriously the effective limiting
magnitude of the instrument.
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Fig. 1. The AMBER optical schematics, showing the principal elements of the
instrument: the spatial filtering is made with optical fibers, then an anamorphosis
optics shrinks the beam in one direction to feed it into a long slit spectrograph where
the spectrally dispersed fringes are finally imaged on the detector.

2 The AMBER instrument

2.1 Short description

AMBER is the near-infrared interferometric re-combiner of the VLTI. Its gen-
eral and technical descriptions are held in the two articles Petrov et al] (R007);
Robbe-Dubois et al] (B007). In short, it features simultaneous observations in
J, H and K bands observations, low (R=35), moderate (R=1500) and high
(R=12000) spectral resolutions, and 3 telescopes operation. The use of optical
fibers to improve calibration and the multiaxial scheme adopted complete this
short view of the instrument (see Fig. []). The AMBER instrument features
also a limited number of pixels in the fringes leading to the use of very specific
algorithms for data reduction.

2.2 AMBER data processing: principle

The AMBER data processing is based on the fitting in the image plane of the
fringe pattern. One can find a complete description of the process in the article
[Catulli et al] (R007H). The resulting basic information is a measurement of the
coherent flux (instantaneous complex coherence factor multiplied by the flux)
for each single frame. Three time-averaged squared visibility, a closure phase
and three differential phases can be extracted from these measurements, us-

ing respectively specific techniques such as quadratic estimator ( ),
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bi-spectrum estimator (Hofmann & Weigelt] [199(]) and inter-spectrum esti-
mator (Beckerq [981]). Added to these interferometric observables, AMBER
provides the object spectrum which adds simultaneous velocimetric measure-
ments to the purely geometric measurements brought by the interferometric
observables.

3 AMBER and the VLTI

3.1 How AMBER behaves on VLTI ?

The AMBER instrument was installed and tested at the Paranal observatory
(ESO, Chile) during the month of may 2004 (Robbe-Dubois et al] 004)). Since
then, a series of commissioning were performed to check the performances of
the AMBER instrument together with the VLTI infrastructure. These first
tests showed that the UTs have vibrations that affects strongly the AMBER
signal (see Fig. E) with a drastic average instrumental visibility decrease with
regards to specifications (20% instead of 80%, leading to a loss of a factor 4
in signal to noise ratio). These vibrations comes mainly from the Coudé train
of the UT's and are in the process of being damped by ESO. However, one has
to consider using the AMBER instrument in the today limited state of VLTI,
taking into account these vibrations.

Therefore, changes in observing and data processing strategies were needed
for AMBER to successfully be opened to the community:

e A longer exposure time (i.e. more individual short exposure frames) is
needed to maximize the chances to get some “useful” frames for the data
processing.

e A frame-selection process, i.e. a removal of spurious frames where there is
either no fringes, no flux or a too high piston has been added to the data
processing software.

3.2 The standard operating mode performances

These observing and data processing strategies are used today on the AM-
BER/VLTI instrument, allowing a better visibilities histogram (closer to a
Gaussian and therefore easier to compute realistic error bars), but are quite
observing time-consuming (about 50 to 90% of the shutter-opened observing
time is lost in practice, added to the already large overheads linked to optical
interferometry). This allows an internal precision (i.e. visibilities scatter inside
an exposure time) of roughly 0.01 to 0.05 for a bright star (K < 4 at medium
spectral resolution), depending on the observing conditions (wind, vibrations,
seeing). However, in practice, the AMBER visibilities precision cannot be bet-
ter than 0.05 due to several strong limitations coming from the infrastructure
itself and from the observing strategy used at Paranal.



4 F. Millour et al.

IEANgRARRRRE

Ll
Base 1
o kB N W

|
1
'

Lo b
Base 2
O R, N W N
e
‘
)
1 i
j
L
i
i
L
|
[TITERRIRAIRETAANANAINET]

800 0.5 1.0

! 3 3F ‘ R

3 ™ E ¥ 1

3 o 2F =

E R I E

1 o 1f E

0.0 L ! ! L3 0 LT Bl 1=
0 200 400 600 800 0.5 1.0

SNR? V2

Fig. 2. Left: A correlation plot between fringe SNR and visibilities shows a strong
correlation, linked to the domination of the jitter effect (blurring of the fringes by
their move during integration time).

Right: AMBER squared visibilities histogram on the same star, showing the highly
non-symmetric effect induced by UT vibrations. The resulting histogram looks like
a log-normal distribution (dashed line) and not like a Gaussian distribution (solid
line), which makes it difficult to extract an average and an error.

e The time between two measurements cannot be less than 30 min (for star
and calibrators, i.e. 1h between 2 science measurements), leading to very
large time gaps in the instrumental /atmospheric/vibrations transfer func-
tion (see Fig. ). This prevents today from interpolating such transfer
function and gain in precision and stability of the measurement.

e The individual frames exposure times changes a lot during the night (see
Fig. E), leading to miscomparisons between full-night data sets, which
provokes a typical night-long visibilities scatter of 0.05. This translates
into typical calibrated visibilities errors of about 0.07.

The table [l summarizes the current situation with typical observing con-
ditions and the AMBER/VLTT instrument. Please note that this is an indica-
tive table and does not represent all the conditions, which can change strongly
depending on the air-mass, seeing, vibrations conditions, etc. Therefore, im-
provements can be expected for AMBER in standard mode, following several
tracks for improving operation:

e Restrain strongly the number of available and effectively used exposure
times during the observing nights. This would probably enhance the final
transfer function scatter and therefore the calibration accuracy.

e Accelerate the time between observations by working on the telescopes
overheads: from the beginning of AMBER operation to today, huge im-
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Fig. 3. Instrument+atmosphere transfer function during the night of 17/02/2006.
In gray are the original visibilities and in black the visibilities corrected from the
intrinsic calibration star’s visibilities. The stars where no visibilities are plotted are
the science stars. One can see the frame exposure time dependence of the transfer
function for the star HD 109787.

Table 1. Error bars order of magnitude one can expect from the AMBER instrument
in the current status using UTs for calibrated measurements. Visibility errors are
dominated by the transfer function error and not by internal visibilities scatter. LR
differential data reduction is highly biased by the atmospheric phase bias and the
errors given here take into account this bias as an error. The figures given here can
be seen as the result of a hard work data processing and very careful calibration
process and not as a pipeline black-box output error estimate.

LR (R=35) MR (R=1500)
Observable |Bright star (K = 5)|Bright star (K = 3.5)
\%4 0.07 0.07
Vaife 0.1 0.01
1195 (rad.) 0.01 0.05
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Fig. 4. Example of a closure phase histogram on an observed star (e Sco, courtesy
of O. Chesneau), illustrating the difference between a Gaussian distribution (dashed
line) and a wrapped phase distribution (solid line): the phase distribution is in-
between a Gaussian-like (dashed line) and a white noise distribution (dotted line),
leading to a problematic estimation of the error bars.

provements have been achieved, and the arrival of FINITO will improve
again these overheads.

e Improve the data processing software, in terms of accuracy, so it take into
account the identified problems and proposed solutions. An effort is also
needed in terms of ergonomy and documentation.

3.3 Closure phase and differential phases

Due to the low number of frames where all three fringes patterns from the
three baselines are present together, the closure phases are very much affected
by the current state of the VLTI. Therefore, the best achievable closure phase
accuracy on a bright star is of the order of 1072 radians, i.e. ~1°, in low
spectral resolution, and about 107! radians, i.e. ~10° in medium spectral
resolution. For “standard” applications, this is in general sufficient, but for
high dynamics or high accuracy measurements, this low precision is very much
killing the use of such observable. Added to that, the specific behaviour of
phases obliges one to compute very specifically the error bars (see Fig. E),
resulting in under-evaluated error bars in the current data processing software
and very noisy data (but this will be solved in the next releases).

The situation on differential phases is much better, with already reached
1072 radians accuracy at medium spectral resolution (Meilland et al] RO07H)
and 1073 radians accuracy (but with a 107! radians bias) at low spectral
resolution (Millour et al|] R00¢). However, systematic biases related to the
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Fig. 5. AMBER detector fringes induced by electromagnetic interferences (

et all P007).

amount of water vapour are still under investigation and the calibration of
such biases for low spectral resolution is still under development.

3.4 The low flux issue

For low number of photons, the AMBER signal switches from a photon-noise
driven behaviour to a detector-noise driven one. In case the detector behaviour
is well known, this signal with few photons is workable with a lower signal-
to-noise regime than with high flux. However, for AMBER, the detector noise
behaviour has changed between the integration laboratory in Grenoble in
2003 and the Paranal interferometric laboratory where it is installed today:
electromagnetic interferences from an unknown source occurs and creates a
correlated noise which appears as “detector fringes” (see Fig. E) Therefore in
the current data reduction scheme and knowledge of the detector put in the
AMBER software, low flux data reduction results in non reliable results.

Therefore, while ESO puts manpower to solve this problem in the hardware
side (Mardoneqd P007), this problem is also under investigations in the data
reduction software side ([Li Causi et al] P007), in order to achieve a workable
data reduction solution for already observed targets. The idea is there to
evaluate the detector correlated noise from exposures without fringes (dark or
photometric beams) and to try to subtract it from the interferometric beam
where the pattern affects the fringes. A prototype version of this algorithm
can be found on the AMDC” web page.

However, this study is only for the already-acquired data and this problem
affects also the on-site real time acquisition of the targets, preventing AM-
BER to reach its goal limiting magnitude without the external fringe tracker
FINITO.

"AMBER detector cleaner, http://www.mporzio.astro.it/~1licausi/AMDC/
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Fig. 6. Coherence length (L.) dependence of the visibilities of AMBER measured in
lab. using the internal piezo mirrors of the instrument. It corresponds to a Gaussian
of FWHM L..

3.5 The low resolution issues

AMBER is facing a series of data processing issues very specific to low res-
olution observations, and which prevents it from working in an optimal way.
We present here a series of identified points to enhance significantly the data
processing in this mode:

e The jitter effect affecting the visibilities (Fig. E) is very important in the
way that it introduces an “artificial” slope to the visibilities, very hard
to calibrate since this jitter effect cannot be calibrated efficiently in the
current state of the infrastructure.

e The coherence length visibility decrease plays also an important role (see
Fig. B), and is difficult to calibrate.

e Problems of bias removal in the squared visibilities introduce a visibility
flux dependence, which is highly problematic for low resolution, since be-
tween the center and the edges of a band, a difference of flux of up to 100
can be found.
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All these issues except the first one have an associated solution, included
hopefully in the next version of the AMBER data reduction software. The
jitter issue is still under investigation and has not reached up to now a level
of comprehension allowing us to present a solution. For this issue, the use of
FINITO (available first with ATs in P80 and probably soon after with the
UTs) is expected to improve a lot the problem.

4 Conclusion

We presented here an overview of what AMBER can do in the current state of
the instrument, data reduction pipeline and infrastructure. The table m gives
typical figures (taken from the personal experience of the authors, and that
must be taken as indicative values and not as specified performances) of what
can reach in practice the AMBER instrument using the Unit Telescopes of
VLTI. With the use of Auxiliary Telescopes and FINITO in a near future,
these figures are expected to improve a lot.

As one can see, the instrument does not work in optimal conditions and
there is room for near future improvements as well as long term instrumental
study to correct all the expected and unexpected effects on the AMBER sig-
nal. However, the huge potential of the AMBER instrument has been already
proved by the numerous first articles published in a special feature of A&A
(Malbet et al] P007; [Tatulli et al] p007d; Meilland et al] POO7THH; Weigeld
bt al) P007; Millour et all 007, [Chesneau et al] R007; [Domiciano de Souzal
bt al] P007), and many other new successful observing programs can be ex-
pected for the future, even with the infrastructure-limited performances of
the instrument.
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