221 research outputs found

    Long-Acting Injectable Statins-Is It Time for a Paradigm Shift?

    Get PDF
    In recent years, advances in pharmaceutical processing technologies have resulted in development of medicines that provide therapeutic pharmacokinetic exposure for a period ranging from weeks to months following a single parenteral administration. Benefits for adherence, dose and patient satisfaction have been witnessed across a range of indications from contraception to schizophrenia, with a range of long-acting medicines also in development for infectious diseases such as HIV. Existing drugs that have successfully been formulated as long-acting injectable formulations have long pharmacokinetic half-lives, low target plasma exposures, and low aqueous solubility. Of the statins that are clinically used currently, atorvastatin, rosuvastatin, and pitavastatin may have compatibility with this approach. The case for development of long-acting injectable statins is set out within this manuscript for this important class of life-saving drugs. An overview of some of the potential development and implementation challenges is also presented

    RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2α

    Get PDF
    Hypoxia-inducible factors (HIFs) are critical transcription factors that mediate cell survival during reduced oxygen conditions (hypoxia). At regular oxygen conditions (normoxia), HIF-1α and HIF-2α are continuously synthesized in cells and degraded via the ubiquitin–proteasome pathway. During hypoxia, these proteins are stabilized and translocate to the nucleus to activate transcription of target genes that enable cell survival at reduced oxygen levels. HIF proteins are tightly regulated via post-translational modifications including phosphorylation, acetylation, prolyl-hydroxylation and ubiquitination. Here we show for the first time that exogenous and endogenous HIF-2α are also regulated via the ubiquitin-like modifier small ubiquitin-like modifiers (SUMO). Using mutational analysis, we found that K394, which is situated in the sumoylation consensus site LKEE, is the major SUMO acceptor site in HIF-2α. Functionally, sumoylation reduced the transcriptional activity of HIF-2α. Similar to HIF-1α, HIF-2α is regulated by the SUMO protease SENP1. The proteasome inhibitor MG132 strongly stabilized SUMO-2-conjugated HIF-2α during hypoxia but did not affect the total level of HIF-2α. The ubiquitin E3 ligases von Hippel–Lindau and RNF4 control the levels of sumoylated HIF-2α, indicating that sumoylated HIF-2α is degraded via SUMO-targeted ubiquitin ligases

    Functional Reconstitution of a Tunable E3-Dependent Sumoylation Pathway in Escherichia coli

    Get PDF
    SUMO (small ubiquitin-related modifier) is a reversible post-translational protein modifier that alters the localization, activity, or stability of proteins to which it is attached. Many enzymes participate in regulated SUMO-conjugation and SUMO-deconjugation pathways. Hundreds of SUMO targets are currently known, with the majority being nuclear proteins. However, the dynamic and reversible nature of this modification and the large number of natively sumoylated proteins in eukaryotic proteomes makes molecular dissection of sumoylation in eukaryotic cells challenging. Here, we have reconstituted a complete mammalian SUMO-conjugation cascade in Escherichia coli cells that involves a functional SUMO E3 ligase, which effectively biases the sumoylation of both native and engineered substrate proteins. Our sumo-engineered E. coli cells have several advantages including efficient protein conjugation and physiologically relevant sumoylation patterns. Overall, this system provides a rapid and controllable platform for studying the enzymology of the entire sumoylation cascade directly in living cells

    Crystal Structure of UBA2ufd-Ubc9: Insights into E1-E2 Interactions in Sumo Pathways

    Get PDF
    Canonical ubiquitin-like proteins (UBLs) such as ubiquitin, Sumo, NEDD8, and ISG15 are ligated to targets by E1-E2-E3 multienzyme cascades. The Sumo cascade, conserved among all eukaryotes, regulates numerous biological processes including protein localization, transcription, DNA replication, and mitosis. Sumo conjugation is initiated by the heterodimeric Aos1-Uba2 E1 enzyme (in humans called Sae1-Uba2), which activates Sumo's C-terminus, binds the dedicated E2 enzyme Ubc9, and promotes Sumo C-terminal transfer between the Uba2 and Ubc9 catalytic cysteines. To gain insights into details of E1-E2 interactions in the Sumo pathway, we determined crystal structures of the C-terminal ubiquitin fold domain (ufd) from yeast Uba2 (Uba2ufd), alone and in complex with Ubc9. The overall structures of both yeast Uba2ufd and Ubc9 superimpose well on their individual human counterparts, suggesting conservation of fundamental features of Sumo conjugation. Docking the Uba2ufd-Ubc9 and prior full-length human Uba2 structures allows generation of models for steps in Sumo transfer from Uba2 to Ubc9, and supports the notion that Uba2 undergoes remarkable conformational changes during the reaction. Comparisons to previous structures from the NEDD8 cascade demonstrate that UBL cascades generally utilize some parallel E1-E2 interaction surfaces. In addition, the structure of the Uba2ufd-Ubc9 complex reveals interactions unique to Sumo E1 and E2. Comparison with a previous Ubc9-E3 complex structure demonstrates overlap between Uba2 and E3 binding sites on Ubc9, indicating that loading with Sumo and E3-catalyzed transfer to substrates are strictly separate steps. The results suggest mechanisms establishing specificity and order in Sumo conjugation cascades

    2D characterization of near-surface V P/V S: surface-wave dispersion inversion versus refraction tomography

    No full text
    International audienceThe joint study of pressure (P-) and shear (S-) wave velocities (Vp and Vs ), as well as their ratio (Vp /Vs), has been used for many years at large scales but remains marginal in near-surface applications. For these applications, and are generally retrieved with seismic refraction tomography combining P and SH (shear-horizontal) waves, thus requiring two separate acquisitions. Surface-wave prospecting methods are proposed here as an alternative to SH-wave tomography in order to retrieve pseudo-2D Vs sections from typical P-wave shot gathers and assess the applicability of combined P-wave refraction tomography and surface-wave dispersion analysis to estimate Vp/Vs ratio. We carried out a simultaneous P- and surface-wave survey on a well-characterized granite-micaschists contact at Ploemeur hydrological observatory (France), supplemented with an SH-wave acquisition along the same line in order to compare Vs results obtained from SH-wave refraction tomography and surface-wave profiling. Travel-time tomography was performed with P- and SH- wave first arrivals observed along the line to retrieve Vtomo p and Vtomo s models. Windowing and stacking techniques were then used to extract evenly spaced dispersion data from P-wave shot gathers along the line. Successive 1D Monte Carlo inversions of these dispersion data were performed using fixed Vp values extracted from Vtomo p the model and no lateral constraints between two adjacent 1D inversions. The resulting 1D Vsw s models were then assembled to create a pseudo-2D Vsw s section, which appears to be correctly matching the general features observed on the section. If the pseudo-section is characterized by strong velocity incertainties in the deepest layers, it provides a more detailed description of the lateral variations in the shallow layers. Theoretical dispersion curves were also computed along the line with both and models. While the dispersion curves computed from models provide results consistent with the coherent maxima observed on dispersion images, dispersion curves computed from models are generally not fitting the observed propagation modes at low frequency. Surface-wave analysis could therefore improve models both in terms of reliability and ability to describe lateral variations. Finally, we were able to compute / sections from both and models. The two sections present similar features, but the section obtained from shows a higher lateral resolution and is consistent with the features observed on electrical resistivity tomography, thus validating our approach for retrieving Vp/Vs ratio from combined P-wave tomography and surface-wave profiling

    Modeling the impact of melt on seismic properties during mountain building

    Get PDF
    Initiation of partial melting in the mid/lower crust causes a decrease in P-wave and S-wave velocities; recent studies imply that the relationship between these velocities and melt is not simple. We have developed a modelling approach to assess the combined impact of various melt and solid phase properties on seismic velocities and anisotropy. The modelling is based on crystallographic preferred orientation (CPO) data measured from migmatite samples, allowing quantification of the variation of seismic velocities with varying melt volumes, shapes, orientations, and matrix anisotropy. The results show non-linear behaviour of seismic properties as a result of the interaction of all of these physical properties, which in turn depend on lithology, stress regime, strain rate, pre-existing rock fabrics, and pressure-temperature conditions. This non-linear behaviour is evident when applied to a suite of samples from a traverse across a migmatitic shear zone in the Seiland Igneous Province, Northern Norway. Critically, changes in solid phase composition and CPO, and melt shape and orientation with respect to the wave propagation direction can result in huge variations in the same seismic property even if the melt fraction remains the same. A comparison with surface wave interpretations from tectonically active regions highlights the issues in current models used to predict melt percentages or partially molten regions. Interpretation of seismic data to infer melt percentages or extent of melting should, therefore, always be underpinned by robust modelling of the underlying geological parameters combined with examination of multiple seismic properties in order to reduce uncertainty of the interpretation
    • 

    corecore