156 research outputs found
Influencia de la ceniza de bagazo de diferentes finuras en la reacción álcali-sílice del mortero
This research aimed to study the effect of finenesses of bagasse ash (BGA) on the alkali-silica reaction of mortar. The BGA sample was ground to have particles retained on a sieve No. 325 of 33±1% and 5±1% by weight. Ground BGA samples were used separately to replace ordinary Portland cement (OPC) at rates of 10, 20, 30 and 40% by weight of binder to cast mortars. The compressive strengths and the alkali-silica reaction (ASR) of mortars were investigated. The results showed that a large particle size of BGA is not suitable for use in lowering ASR because it results in a low compressive strength and high expansion due to ASR. The mortars containing BGA with higher fineness exhibited higher compressive strength and lower expansion due to ASR than the mortars containing BGA with lower fineness. The results also suggested that the ground BGA retained on a sieve No. 325 of less than 5% by weight is suitable to be used as a good pozzolan which provides high compressive strength and reduces the expansion of mortar due to ASR even though it contains high LOI. The obtained results also encourage the utilization of ground BGA effectively which leads to reduce the disposal of bagasse ash.Esta investigación tiene como objetivo estudiar el efecto de la finura de la ceniza de bagazo (BGA) en la reacción álcali-sílice del mortero. La muestra de BGA fue molida para conseguir partículas retenidas en un tamiz No. 325 de 33 ±1% y 5±1% en peso. Las muestras de BGA molidas fueron utilizadas separadamente para reemplazar el cemento Portland en proporciones del 10, 20, 30 y 40% en peso en el mortero. Se estudiaron tanto las resistencias a compresión como la reacción álcali-sílice (RAS) de los morteros. Los resultados indicaron que la utilización de un tamaño mayor de las partículas de BGA no es recomendable para disminuir la RAS ya que conlleva a una disminución de las resistencias a compresión y a una alta expansión debido a la RAS. Los morteros que contenían BGA de una mayor finura exhibían mayor resistencia a compresión y una menor expansión, debido a la RAS, que los morteros que contenían BGA de menor finura. Al mismo tiempo los resultados sugieren que el BGA molido retenido en un tamiz No. 325 de menos de un 5% en peso es apropiado para ser usado como material puzolánico, ya que provee una gran resistencia y reduce la expansión del mortero producido por la RAS a pesar de contener una alta pérdida por calcinación. Los resultados obtenidos también recomiendan la utilización eficiente del BGA molido ya que conlleva una disminución de los desechos de las cenizas de bagazo
Investigación del empleo de ceniza de la combustión de aceite de palma y filler calizo en la fabricación de hormigones sostenibles de alta resistencia
This study deals with the production of concrete with low CO2 emissions. For this reason, two materials, namely palm oil fuel ash (POFA) and limestone powder (LP), were used as mineral additions to replace conventional cement as much as possible. The results showed that concrete containing 60 wt% POFA could achieve the high strength requirements of ACI 363R from an age of 28 days. At a replacement level of 70 wt% of admixtures, the use of 10 wt% LP + 60 wt% POFA was a good mixture as it had the highest concrete compressive strength, had a minor effect on shrinkage strain and reduced heat generation by approximately 50% compared to cement concrete. Additionally, the use of POFA and LP is a good choice to produce environmentally friendly concrete, which can reduce the CO2 emissions of concrete by about 44–62% compared to cement concrete at similar strength.En este estudio se aborda la producción de hormigón con bajas emisiones de CO2. Por este motivo, se utilizaron dos materiales, a saber, ceniza de aceite de palma (POFA) y filler de piedra caliza (LP). Estos materiales se añadieron para llevar a cabo el reemplazo del cemento convencional tanto como fuera posible. Los resultados muestran que el hormigón que contiene un 60% en peso de POFA podría lograr los altos requisitos de resistencia de ACI 363R, a partir de los 28 días de edad. Al ampliar el nivel de sustitución al 70% en peso de aditivos, con la mezcla de 10% de LP + 60% de POFA se obtendrá una mayor resistencia a la compresión del hormigón, ya que este tenía un efecto menor en la deformación por contracción y de igual manera reducía la generación de calor en aproximadamente un 50% en comparación con el hormigón convencional. Además, el uso de POFA y LP es una buena opción para producir hormigón ecológico y lograr una aportación con el medio ambiente ya que reduce las emisiones de CO2 del hormigón en aproximadamente un 44–62% en comparación con el hormigón convencional de resistencia similar
Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete
This research studies the effects of W/B ratios and palm oil fuel ash (POFA) on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B) ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were investigated up to 90 days. The results showed that POFA concrete with W/B ratio of 0.40 had the compressive strengths ranging from 45.8 to 55.9 MPa or 82–94% of OPC concrete at 90 days, while POFA concrete with W/B ratio of 0.50 had the compressive strengths of 33.9–41.9 MPa or 81–94% of OPC concrete. Furthermore, the compressive strength of concrete incorporation of ground POFA at 15% was the same as OPC concrete. The water permeability coefficient and the chloride ion penetration of POFA concrete were lower than OPC concrete when both types of concrete had the same compressive strengths. The findings also indicated that water permeability and chloride ion penetration of POFA concrete were significantly reduced compared to OPC concrete
Factors affecting compressive strength and expansion due to alkali-silica reaction of fly ash-based alkaline activated mortar
Data availability: Data will be made available on request.Copyright © 2023 The Author(s). The development of environmentally friendly alkaline-activated materials (AAMs) holds promise, as AAMs can be derived from waste materials. This study aims to investigate the factors influencing (i) compressive strength and (ii) expansion due to alkali-silica reaction (ASR) in AAMs. These factors include alkaline concentration, heat curing conditions, fineness of fly ash, and the liquid alkaline-to-binder (L/B) ratio. The findings indicate that the higher concentrations of NaOH solution led to an increase in AAM compressive strength due to the enhanced dissolution and polymerization rates in a more alkaline environment. Heat curing stimulated chemical reactions and structure formation, while the reduced water content resulted in lower porosity and higher compressive strength in the hardened cement. Finer fly ash yielded greater compressive strength than coarser ash, as its smaller spherical particles contributed to denser and firmer structures. The presence of calcium minerals, from both Ordinary Portland Cement (OPC) and high-calcium fly ash, bolstered the strength of hardened products. Moreover, calcium minerals like CaO, Ca(OH)2, and CaSO4 were found to induce ASR expansion by promoting gel formation, leading to later-stage expansion in the hardened cement or concrete. However, finely milled fly ash as a precursor significantly reduced ASR expansion in AAMs, by approximately 40% compared to ordinary Portland cement. This study provides valuable insights for civil engineers for better understanding of AAM behavior and makes contributions to the safety and sustainability of cement and concrete systems.Thailand Science Research and Innovation (TSRI) under Fundamental Fund 2023 (Project: Advanced Construction Towards Thailand 4.0); Department of Civil Engineering, Faculty of Engineering, Chiang Mai University (CMU)
Management and valorisation of wastes through use in producing alkali-activated cement materials
There is a growing global interest in maximising the re-use and recycling of waste, to minimise the environmental impacts associated with waste treatment and disposal. Use of high-volume wastes in the production of blended or novel cements (including alkali-activated cements) is well known as a key pathway by which these wastes can be re-used. This paper presents a critical overview of the urban, agricultural, mining and industrial wastes that have been identified as potential precursors for the production of alkali-activated cement materials, or that can be effectively stabilised/solidified via alkali activation, to assure their safe disposal. The central aim of this review is to elucidate the potential advantages and pitfalls associated with the application of alkali-activation technology to a wide variety of wastes that have been claimed to be suitable for the production of construction materials. A brief overview of the generation and characteristics of each waste is reported, accompanied by identification of opportunities for the use of alkali-activation technology for their valorisation and/or management
Investigation of hard-burn and soft-burn lime kiln dust as alternative materials for alkali-activated binder cured at ambient temperature
Copyright © 2020 The Author(s). As climate change becomes a severe concern, the development of green technology becomes a goal for many sectors, including the construction material sector. Ordinary Portland cement (OPC), the main constituent of concrete production, is a primary contributor to releasing carbon dioxide (CO2) into the atmosphere. Some alternative cementitious materials have been studied to reduce the massive amount of OPC consumption. Lime kiln dust (LKD), a by-product of quicklime production, is produced in abundance worldwide and mostly disposed of in landfills. The two types of LKD, soft-burn and hard-burn, are high-potential wastes that can be developed as alternative cementitious binders using the alkali-activated binder (AAB) technology. This study investigates the mixture designation and properties of LKD-based AAB when cured at ambient temperature. The results show that an ambient-cured soft-burn LKD-AAB achieved practical workability with an 8 M NaOH solution, 1.50 of sodium silicate-to-sodium hydroxide ratio (SS/SH), and 0.60 of liquid alkaline-to-binder ratio (L/B). A rapid setting behavior and an excellent compressive strength of 10.89 MPa at 28 days were revealed at room temperature curing. The ambient-cured hard-burn LKD-AAB could not provide the appropriate properties. However, the mixture of 20% hard-burn LKD and 80% soft-burn LKD resulted in an LKD-AAB mixture that meets the minimum requirement for low-strength cement applications. The positive outcome of this study may be the solution for of LKD wastes utilization in Thailand that addresses the challenge of developing ambient-cured AAB for in-field applications.Partially supported by Chiang Mai University; the fifth author would like to acknowledge the financial support of the Thailand Research Fund (TRF) under the TRF Distinguished Research Professor Grant No. DPG6180002; financial support and the raw materials for these experiments from Chememan Public Company Limited, Thailand
Properties of concrete made from industrial wastes containing calcium carbide residue palm oil fuel ash rice husk-bark ash and recycled aggregates
บทคัดย่อคอนกรีตนี้ถูกทำขึ้น โดยใช้วัสดุเหลือทิ้งอุตสาหกรรมทั้งในวัสดุประสานและมวลรวมกากแคลเซียมคาร์-ไบด์ (CCR) ผสมแยกกับเถ้าปาล์มน้ำมัน (PA) และเถ้าแกลบเปลือกไม้ (RA) นำมาใช้เป็นวัสดุประสานแทนที่ปูนซีเมนต์ในส่วนผสมคอนกรีต นอกจากนี้มวลรวมรีไซเคิลถูกนำมาใช้แทนที่มวลรวมธรรมชาติเพื่อที่หล่อตัวอย่างคอนกรีต (คอนกรีต CCR-PA และ CCR-RA) สมบัติของคอนกรีต ได้แก่ กำลังอัด การแทรกซึมของคลอไรด์ และการซึมของน้ำผ่านคอนกรีตได้รับการประเมินและเปรียบเทียบกับคอนกรีตควบคุม (คอนกรีต CON) ผลการวิจัยพบว่าวัสดุประสาน CCR-PA และ CCR-RA สามารถนำมาใช้เป็นสารยึดเกาะในคอนกรีตที่ใช้มวลรวมรีไซเคิล แม้ว่าวัสดุประสาน CCR-PA และ CCR-RA มีหรือไม่มีปูนซีเมนต์ การพัฒนากำลังอัดของคอนกรีต CCR-PA และ CCR-RA คล้ายกับคอนกรีต CON นอกจากนี้วัสดุประสาน CCR-PA และ CCR-RA สามารถปรับปรุงการแทรกซึมของคลอไรด์และการซึมของน้ำผ่านคอนกรีตได้อย่างมีประสิทธิภาพ ผลการวิจัยยังชี้ให้เห็นว่าคอนกรีต CCR-PA และ CCR-RA สามารถใช้เป็นคอนกรีตที่เป็นมิตรต่อสิ่งแวดล้อมชนิดใหม่ เพราะคอนกรีตเหล่านี้สามารถลดการปล่อยก๊าซคาร์บอนไดออกไซด์และลดปัญหาสิ่งแวดล้อมAbstractThis concrete was made by using several industrial wastes in both binder and aggregates. Calcium carbide residue (CCR) mixed separately with palm oil fuel ash (PA) and rice husk-bark ash (RA), and was used as a binder instead of Portland cement in the concrete mixture. Furthermore, recycled aggregates were fully replaced natural aggregates in order to cast concrete specimens (CCR-PA and CCR-RA concretes). Concrete properties namely compressive strength, chloride migration, and water permeability of CCR-PA and CCR-RA concretes were evaluated and compared with the conventional concrete (CON concrete). The results indicated that CCR-PA and CCR-RA binders could be used as a new cementitious material in recycled aggregate concrete, even though the CCR-PA and CCR-RA binders contained no Portland cement. The characteristic compressive strength of CCR-PA and CCR-RA concretes developed similar to CON concrete. Moreover, CCR-PA and CCR-RA binders in the mixtures were effectively improving the chloride migration and water permeability of recycled aggregate concretes. These results also suggested that CCR-PA and CCR-RA concretes can be used as a new environmental friendly concrete because of these concretes can reduce as much as CO2 emissions and environmental problems
Review on Various Types of Geopolymer Materials with the Environmental Impact Assessment
The development of green technology in the construction industry since 10 years ago is something to be proud of Malaysia. Several alternative geopolymer materials were invented in Malaysia such as fly ash, POFA, kaolin, metakaolin, and dolomite based geopolymer materials to achieve sustainable development especially in the building and construction sector. Those alternative materials are very important to replace the application of OPC, which is said to be the main cause of global warming. A review on the content of the chemical differences with the environmental impact resulting from the production of geopolymer is carried out in this study. In conclusion, fly ash based geopolymer material showed the best performance in terms of aluminosilicate content and also it is the best practice in the environmental protection applications for the moment. However, when compared with the OPC, fly ash geopolymer concrete was still able to reduce the effects of global warming potentials, but it is rather gave a negative impact on some aspects of the environment such as abiotic depletions, human toxicity, freshwater ecotoxicity, terrestrial ecotoxicity and acidification
Compressive Strength of Construction Materials Containing Agricultural Crop Wastes: A Review
The growth of industrialization and development of urban life made an increase in demand for cement, concrete and bricks. Exploitation on the non-renewable natural resources for raw materials will keep increased in order to meet the demands for construction materials. At the same time, the problems regarding the agricultural crop wastes such as rice husk, sugarcane bagasse, palm oil fuel waste and elephant grass has become an important issue nowadays. Consequently, there are many researchers who have been studying the viability of using these agricultural wastes as construction materials to meet the industry demands in order to decrease the current use of non-renewable natural resources. This paper reviewing on how agricultural waste could be utilized as replacement materials for construction activities from various researchers. The idea of using agricultural crop wastes was promoted by studying upon their engineering properties. This paper focusing on the compressive strength of the construction materials containing agricultural crop wastes, which was the common parameter considered by most researcher as required by various standards
- …
