451 research outputs found

    On Energy Reduction and Green Networking Enhancement due to In-Network Caching

    Get PDF
    In-network caching in information centric networking (ICN) is considered as a promising approach to reducing energy consumption of an entire network. However, it is also considered as an energy consuming technique. These contradictory claims lead to one research question: Does caching really reduce the energy consumption of the entire network? To answer the question, we formulate an ICN network as an optimization problem with a realistic energy consumption model for an ICN router. By solving the formulation assuming that ICN forwarding software currently under development is used as a forwarding engine of an ICN router, we reveal that in-network caching alone does not reduce much energy but it enhances a currently developed green networking technique even though the forwarding engine is not fully optimized

    On Energy Reduction and Green Networking Enhancement due to In-Network Caching

    Get PDF
    In-network caching in information centric networking (ICN) is considered as a promising approach to reducing energy consumption of an entire network. However, it is also considered as an energy consuming technique. These contradictory claims lead to one research question: Does caching really reduce the energy consumption of the entire network? To answer the question, we formulate an ICN network as an optimization problem with a realistic energy consumption model for an ICN router. By solving the formulation assuming that ICN forwarding software currently under development is used as a forwarding engine of an ICN router, we reveal that in-network caching alone does not reduce much energy but it enhances a currently developed green networking technique even though the forwarding engine is not fully optimized

    Power Consumption Model of NDN-Based Multicore Software Router Based on Detailed Protocol Analysis

    Get PDF
    Named data networking (NDN) has received considerable attention recently, mainly due to its built-in caching, which is expected to enable widespread and transparent operator-controlled caching. One of the important research challenges is to reduce the amount of power consumed by NDN networks as it has been shown that NDN's name prefix matching and caching are power-hungry. As a first step to achieving power-efficient NDN networks, in this paper, we develop a power consumption model of a multicore software NDN router. By applying this model to analyze how caching reduces power, we report that caching can reduce power consumption of an NDN network if the power consumption of routers is in proportion to their load and the computation of caching is as light as that of forwarding

    Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C

    Get PDF
    Semiconductor mode-locked lasers (MLLs) are promising frequency comb sources for dense wavelength-division-multiplexing (DWDM) data communications. Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions. To the best of our knowledge, however, to date, there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range. Here, we report a frequency comb source based on a quantum dot (QD) MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120°C. The two-section passively mode-locked InAs QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz (corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain) with a variation of 0.07 GHz in the tone spacing over the tested temperature range. By keeping the saturable absorber reversely biased at − 2    V , stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only, providing easy control of the device. At an elevated temperature of 100°C, the device shows a 6 dB comb bandwidth of 4.81 nm and 31 tones with > 36    dB optical signal-to-noise ratio. The corresponding relative intensity noise, averaged between 0.5 GHz and 10 GHz, is − 146    dBc / Hz . Our results show the viability of the InAs QD MLLs as ultra-stable, uncooled frequency comb sources for low-cost, large-bandwidth, and low-energy-consumption optical data communications.Royal Academy of Engineering (RF201617/16/28); Engineering and Physical Sciences Research Council (EP/R041792/1, EP/T01394X/1)

    Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20 °C and 120 °C

    Get PDF
    Semiconductor mode-locked lasers (MLLs) are promising frequency comb sources for dense wavelength-division-multiplexing (DWDM) data communications. Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions. To the best of our knowledge, however, to date, there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range. Here, we report a frequency comb source based on a quantum dot (QD) MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120°C. The two-section passively mode-locked InAs QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz (corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain) with a variation of 0.07 GHz in the tone spacing over the tested temperature range. By keeping the saturable absorber reversely biased at −2 V , stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only, providing easy control of the device. At an elevated temperature of 100°C, the device shows a 6 dB comb bandwidth of 4.81 nm and 31 tones with >36 dB optical signal-to-noise ratio. The corresponding relative intensity noise, averaged between 0.5 GHz and 10 GHz, is −146 dBc/Hz . Our results show the viability of the InAs QD MLLs as ultra-stable, uncooled frequency comb sources for low-cost, large-bandwidth, and low-energy-consumption optical data communications

    Expression of PPARδ in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology

    Get PDF
    Whether peroxisome proliferator-activated receptor (PPAR) δ is a good target for the chemoprevention and/or treatment of colorectal cancer (CRC) remains controversial. Our goal was to examine PPARδ expression in multistage carcinogenesis of the colorectum and to assess the relevance of PPARδ in CRC. Immunohistochemical analysis indicated that PPARδ expression increased from normal mucosa to adenomatous polyps to CRC. In cancer tissues, the PPARδ protein was accumulated only in those cancer cells with highly malignant morphology, as represented by a large-sized nucleus, round-shaped nucleus, and presence of clear nucleoli. Interestingly, the cancer tissue often contained both PPARδ-positive and -negative areas, each retaining their respective specific morphological features. Moreover, this pattern persisted even when PPARδ-positive and -negative cells were aligned next to each other within a single cancer nest or gland and was present in the majority of CRC cases. Immunohistochemistry for Ki-67 proliferation marker showed no significant correlation between Ki-67 and PPARδ in CRC samples. Based on Western blot analysis and quantitative RT–PCR, high PPARδ protein expression correlated with high PPARδ mRNA levels. Peroxisome proliferator-activated receptor δ may have a supporting role in tumorigenesis, and the close association between PPARδ expression and malignant morphology of CRC cells suggests a pivotal role in cancer tissue

    MicroRNA-196b is an independent prognostic biomarker in patients with pancreatic cancer

    Get PDF
    microRNA-196bは膵癌において異常高発現しており,多変量解析で不良な予後に相関した.その阻害剤は膵癌細胞株において抗腫瘍効果を示すことから,microRNA-196bは診断バイオマーカーおよび治療標的となることが示唆された

    Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}

    Get PDF
    Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV collected by the CDF II detector, we present a cross section measurement of top-quark pair production with an additional radiated photon. The events are selected by looking for a lepton, a photon, significant transverse momentum imbalance, large total transverse energy, and three or more jets, with at least one identified as containing a b quark. The ttbar+photon sample requires the photon to have 10 GeV or more of transverse energy, and to be in the central region. Using an event selection optimized for the ttbar+photon candidate sample we measure the production cross section of, and the ratio of cross sections of the two samples. Control samples in the dilepton+photon and lepton+photon+\met, channels are constructed to aid in decay product identification and background measurements. We observe 30 ttbar+photon candidate events compared to the standard model expectation of 26.9 +/- 3.4 events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009. Assuming no ttbar+photon production, we observe a probability of 0.0015 of the background events alone producing 30 events or more, corresponding to 3.0 standard deviations.Comment: 9 pages, 3 figure

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined
    corecore