
0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

1

Power Consumption Model of NDN-based
Multicore Software Router based on Detailed

Protocol Analysis
Kaito Ohsugi, Non-Member, Junji Takemasa, Non-Member, Yuki Koizumi, Member, IEEE,

Toru Hasegawa, Member, IEEE, and Ioannis Psaras, Member, IEEE

Abstract—NDN (Named Data Networking) has received con-
siderable attention recently, mainly due to its built-in caching,
which is expected to enable widespread and transparent operator-
controlled caching. One of the important research challenges is
to reduce the amount of power consumed by NDN networks as it
has been shown that NDN’s name prefix matching and caching
are power-hungry. As a first step to achieving power-efficient
NDN networks, in this paper, we develop a power consumption
model of a multicore software NDN router. By applying this
model to analyze how caching reduces power, we report that
caching can reduce power consumption of an NDN network if
the power consumption of routers is in proportion to their load
and the computation of caching is as light as that of forwarding.

Index Terms—ICN (Information Centric Networking), NDN
(Named Data Networking), Green Network, Power Consumption
Model, Multicore Software Router

I. INTRODUCTION

DUE TO its host-based communication and end-to-end
approach, IP cannot naturally provide rich functions such

as mobility, multicasting and in-network caching. For example,
locators of a host change as it moves, while the host name
remains unchanged. Since IP routers do not have functions to
handle such changing locators, mobility management should
be implemented by special severs. In order to overcome such
problems inherent to IP, NDN (Named Data Networking) [1]
is designed as an alternative Internet architecture. NDN nat-
urally supports the above functions by adopting name-based
routing/forwarding and ensures that NDN routers keep state
of routes and caches.

Despite the fact that NDN provides numerous functions,
time-consuming name prefix matching and caching raise a
couple of issues related to forwarding performance [2] and
power consumption. Since name prefix matching and caching
are time-consuming, high-performance NDN router implemen-
tation has become a hot research topic [3], [4], [5].

The research leading to these results has received funding from the EU-
JAPAN initiative by the EC Seventh Framework Programme (FP7/2007-2013)
Grant Agreement no. 608518 and NICT under Grant Agreement no. 167
(GreenICN project) and UK EPSRC COMIT grant no. EP/K019589/1.

Kaito Ohsugi, Junji Takemasa, Yuki Koizumi, and Toru Hasegawa are
with Graduate School of Information Science and Technology, Osaka Univer-
sity, Japan (e-mail: k-ohsugi@ist.osaka-u.ac.jp; j-takemasa@ist.osaka-u.ac.jp;
ykoizumi@ist.osaka-u.ac.jp; t-hasegawa@ist.osaka-u.ac.jp).

Ioannis Psaras is with the Electronic and Electrical Engineering Department,
University College London, United Kingdom (e-mail: i.psaras@ucl.ac.uk).

NDN router caching reduces the amount of traffic forwarded
towards upstream routers and thus, reduces the power con-
sumed by their forwarding devices such as interface cards.
A well-studied issue is optimizing cache placement, which
determines where in the network to place caches [6], [7]
assuming that memory devices for caching consume consid-
erable amounts of power even while in the idle state. For
example, Perino et al. assume that DRAM (Dynamic Ran-
dom Access Memory) devices used for CSs (Content Stores)
consume 0.023 W/MB while in the idle state [3]. However,
the power they consume is being reduced by lowered voltage
and improvements in manufacturing technology. Vogelsang
predicts that the decrease in power per bit consumed by DDR
SDRAM (Double-Data-Rate Synchronous DRAM) is 1.2 per
generation of DDR [8].

We argue that this trend towards lower power consumption
implies that the power consumed by time-consuming name
prefix matching and caching will become larger than the power
consumed by the memory devices themselves. This raises the
following question: does caching actually reduce the power
consumed by an NDN network by compensating for power-
hungry name prefix matching and caching? Thus, in this paper,
we address the tradeoff relation between the increase of power
consumed by name prefix matching and caching of downstream
routers and the decrease of power consumed by upstream
routers due to traffic reduction.

As a first step, we model how a PC-based multicore
software NDN router consumes power. We chose a software
router based on PC-based hardware platform as a target NDN
router as recent studies [4], [5] show that well-engineered
NDN software routers achieve high-performance name-based
forwarding and caching.

In [9], we empirically developed a power consumption
model of a PC-based multicore CCNx software router and
made two contributions. First, we modelled how individual
devices such as a chassis, a CPU device and a NIC (Network
Interface Card) consume power under various loads. Second,
we empirically analysed how many CPU cycles are needed by
each function of the CCNx source code and then calculated the
loads of individual devices based on the cycles. This two-step
process made it possible to estimate the power consumed by
a PC-based CCNx router when its average cache hit rate and
chunk size are given. A very important finding of our study
in [9] is that the power consumed by caching is so large that
traffic reduction due to caching does not reduce the overall

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

2

power consumed by the network.
In this paper, we extend our previous work in [9] to

develop a general power consumption model. Despite its initial
success, the model in the earlier paper [9] is preliminary and
overlooks several important issues. The goal of this paper is
to develop a general power consumption model by addressing
factors missing from the previous model. The improvements
on the previous paper are summarized as follows:

• We model the power consumed by multiple CPU devices
using power optimization techniques, whereas in the
previous paper these were disabled in order to avoid
the difficulty in modeling their non-linear effects. We
extend the modeling technique developed in [10] so
that the power consumed by multiple CPU devices is
estimated. This is an important requirement, given that
power consupmtion of CPU devices is proportional to
the load [11].

• We extend the study to three PC-based servers, in contrast
to our previous paper in [9] where we used only one.

• The model is validated by actually running the NFD
(NDN Forwarding Daemon) source code [12] on the two
platforms, while such validations were not performed in
the previous paper. The power consumed by the platforms
running the NFD source code is precisely estimated by
the model under the same cache hit rates.

• This paper uses the power consumption model which is
developed by using the well-engineered NDN router [4]
as a reference; in our previous study, instead, we used
the NFD router, which, reportedly, does not achieve high
forwarding performance.

The above improvement in accuracy and coverage of multiple
server computers enhances the reliability of the observations
made based on the experience of developing the model and
calculating the power consumed by an NDN network. The
contributions of the paper are summarized as follows:

• This paper sheds light on the power consumed by name
prefix matching and caching, whereas most studies on
power reduction in an NDN network consider power
consumed by memory devices while in the idle state [6],
[7].

• This paper develops a general method for developing
a power consumption model of a PC-based multicore
NDN software router by applying the method to the three
different server computers.

• The paper precisely models multicore CPU devices with
power management states. This makes it clear that power
consumption of CPU devices is proportional to their
load if they are highly loaded and thus this energy-
proportionality is an important requirement to reduce
power consumption of a network by caching.

• By using the power consumption model of the well-
engineered NDN router, the paper clarifies that caching
contributes to reducing power consumed by an overall
NDN network if well-engineered NDN routers are used.

The rest of this paper is organized as follows. Section II
summarizes the related work. Section III describes the refer-
ence architecture. Sections IV and V empirically model how a

multicore software router based on NFD [12] consumes power.
Section IV models the power consumed by the hardware
platform and Section V focuses on the power consumed by
NFD packet forwarding. Section VI applies the model to
estimate power consumed by networks of three topologies.
Section VII concludes the paper.

II. RELATED WORK

Since name prefix matching and caching are time-
consuming, high-performance NDN router implementations
are a hot research topic. Perino et al. [3] were the first to
address this issue and predict future name prefix matching
performance. So et al. [4] designed a high-performance for-
warding algorithm and implemented it on a commercial router
chassis. Focusing on caching, Rossini et al. [5] design a
caching algorithm to achieve high performance content access
on multi-terabyte caching devices. Whereas these studies focus
on individual routers, Fukushima et al. design a protocol which
avoids redundant longest prefix matching due to neighboring
routers’ cooperation [13]. In contrast, this paper focuses on
the power consumed by packet-level forwarding.

Many studies focus on the caching functions because traffic
reduction would contribute to energy savings. Lee et al. [14],
[15] investigated how much power is reduced by reducing hop
counts to obtain contents. In their simulations, they used a
power consumption model which only considers the power
consumed by lower layer packet forwarding devices. Choi et
al. [6] show that the power consumed by memory devices
used for caching and for the forwarding processes is not
insignificant. Imai et al. [7] proposed a method of determining
capacities of NDN routers’ memory devices so that the power
they consume is minimized.

Many power consumption models focus on the power
consumed by memory devices because they are power-hungry
even while in idle state. In contrast, this paper focuses on the
power consumed by packet forwarding, taking into account the
trend towards low power consumption by memory devices [8],
[16].

Bolla et al. [17], [10] model the power consumed by a CPU
device with power optimization techniques by considering two
power management states. Although our study is partially
motivated by [17], [10], in this paper, we model multiple CPU
cores (compared to only one in [17], [10]) and empirically
validate the developed model by applying it to two different
commercial CPU devices. Finally, we take into account all
elements of the router (e.g., chassis, memory devices and
CPU), in contrast to [17], [10], where only the CPU is taken
into account.

III. REFERENCE ARCHITECTURE

A. Hardware Platform

We selected multicore software routers as our target hard-
ware platforms due to the following reasons. First, full-fledged
NDN routers that have all NDN functions would not be used
in backbone networks but only in access networks. This is
because caching in backbone networks is not as effective
as it is in access networks [18]. Second, it is natural that

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

3

Fig. 1: Flow of Blocks of NFD Source Code

NDN functions are not implemented by interface cards, but
by service cards like the ISM (Integrated Service Module)
cards in a vendor’s routers. So et al. [4] showed that 20 Gbps
throughput is feasible on such service cards in commercial
routers, which are multicore software routers consisting of a
service card and multiple interface cards. In this paper, we use
the three PC-based hardware platforms, each of which consists
of one CPU device with 4 CPU cores or two CPU devices with
4 CPU cores, one DDR3 memory device, a chassis and one
NIC (network interface card). The DDR3 memory device is
used to store both tables and packets.

B. NFD Software

1) Packet Processing Flow: We selected NFD [12] as an
implementation of NDN. We analyze the NFD source code and
group functions into seven groups of functions, each of which
is referred to as a block. Figure 1 shows the flow through
the seven blocks B1 to B7. Blocks B2, B3 and B6 are the
blocks used for caching computation. Block B2 looks up a
Data packet requested by an ingress Interest packet. Then
block B3 fetches (reads) the hit Data packet from the CS.
Then block B6 inserts an ingress Data packet into the CS.

The blocks perform request/reply NDN communication
using Interest and Data packets as summarized below. First,
a requestor of an information piece sends an Interest packet
and its destination is specified as the name of the piece, i.e.,
a human-readable hierarchical name like a URL (universal
resource locator). When a router receives the Interest packet
(at B1), the block checks whether the packet is retransmitted
or not by checking the PIT (pending interest table). Then B2

checks whether the Data packet holding the information piece
is stored in the CS. If the piece is in the CS, B3 fetches the
Data packet from the CS and B7 sends back the Data packet to
the requestor. Block B2, for looking up the CS, is computation
and memory intensive.

Otherwise, B4 forwards the Interest packet to an upstream
router after performing longest-prefix matching using the FIB
(forwarding information table), which holds pairs of name
prefixes and outgoing interfaces. In addition, the block creates
an entry in the PIT to record the interface that the Interest
packet comes from, and thus it is computation intensive.

Second, when the router receives a Data packet at B5,
B6 stores the Data packet in the CS. At the same time, an
unpopular Data packet may be replaced by this Data packet.
This block is the most computation and memory intensive
among all the blocks, and the memory device consumes a
large amount of power. Then B7 sends the Data packet to the
requestor after removing the entry from the PIT.

Interest and Data packets are encapsulated by UDP/IP
packets and the NIC forwards the encapsulated packets.

2) Multi-Threading: How to make the NFD source code
multi-threaded is important because the hardware platform
provides multiple threads, while the NFD source code is
single-threaded. In this study, we consider that the NFD code
is multi-threaded by making the following assumptions. First,
one thread handles sending/receiving packets to/from the NIC
and dispatches a received packet to one of the other threads
that perform NDN protocol processing. Second, each thread
for NDN protocol processing is assigned a CS for storing
the information for part of the whole name space so that it
does not access CSs of the other threads. In other words, the
name spaces of individual threads’ CSs are separated from
each other. This avoids mutual-exclusion of the threads. Third,
the minimum number of threads is greater than the number of
CPU cores. The threads are assigned to CPU cores so that the
number of active CPU cores is minimized. How many CPU
cores are used is determined from the total load of the NDN
router.

IV. POWER CONSUMPTION MODEL

We develop a power consumption model of a multicore
software NDN router to satisfy the following requirements.
The first requirement is that the model should reflect the loads
on a hardware platform, that is, the consumed power should
be a function of the loads. Such loads include a CPU load,
an access rate to DRAM (DDR3) devices, and so forth. The
second requirement is that the above-mentioned loads on the
hardware platform should be derived from loads on NDN
packet forwarding. Sections IV and V address the first and
second requirements, respectively.

A. Formulation

We formulate the power consumed by a PC-based hard-
ware platform having the minimum configuration. The power
ϕrouter [W] is defined as,

ϕrouter(cndn, rmem, λip) = ϕcpu(cndn) + ϕmem(rmem)

+ ϕnic(λip) + Φchassis. (1)

It is parameterized by the following three parameters: the load
on the CPU device (cndn [cycle]), the number of bytes ac-
cessed in the DDR device per second (rmem [byte/s]), and the
IP packet forwarding rate (λip [packet/s]). To measure the CPU
load, we use the CPU cycles incurred for processing tasks,
such as NDN packet processing. Each term in Eq. (1), which
indicates the power consumed by each hardware component,
is explained as follows:

• ϕcpu(cndn) [W] is the power consumed by the CPU
device. It is a function of the CPU load cndn.

• ϕmem(rmem) [W] is the power consumed by accessing
the DDR3 device. It is a function of the number of bytes
accessed per second rmem.

• ϕnic(λip) [W] is the power consumed by the NIC. It is a
function of the IP packet forwarding rate λip.

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

4

• Φchassis [W] is the power consumed by the chassis when
the router is idle. It includes the power consumption of
all devices.

Note that we use capital and small letters to express constants
and variables, respectively.

In this section, we empirically measure the above four
terms in order to model them. For the measurement, we
employ two different kinds of computer architectures: one
for general-purpose computing (x86-64), and one for mission-
critical computing (IA-64). From the two architectures, we
select three server computers: a high-performance server com-
puter for general-purpose computing (server 1), a low-energy
server computer for general-purpose computing (server 2),
and a high-performance server computer for mission-critical
computing (server 3). Server 1 has two Intel R⃝ Xeon R⃝ E5620
processors (2.4 GHz × 4 cores), one DDR3 12 GB memory
device, one Intel R⃝ X540-T2 10GBASE-T NIC. Server 2 has
one Intel R⃝ Xeon R⃝ E3-1220 processor (3.10 GHz × 4 cores),
one DDR3 16 GB memory device, one Intel R⃝ X540-T2
10GBASE-T NIC. Server 3 has one Intel R⃝ Itanium R⃝ 9520
processor (1.73 GHz × 4 cores), one DDR3 8 GB memory
device, and one HP R⃝ Integrity Ethernet I/O adapter. To sim-
plify the notation, we refer to Intel R⃝ Xeon R⃝ E5620, Intel R⃝

Xeon R⃝ E3-1220, and Intel R⃝ Itanium R⃝ 9520 processors as
E5620, E3-1220, and 9520 processors, respectively hereafter.
As operating systems, we use Ubuntu 13.10 for the general-
purpose servers and HP-UX 11.31 for the mission-critical
server. We use a power meter and a current transformer
developed by Omron R⃝ (ZN-CTX21 and ZN-CTS51-200As).
The power is measured in joules per second (watt). Each
measurement is performed for 30 minutes, consisting of a 10-
minute warm-up phase and a 20-minute measurement phase.
To ensure that we are measuring the servers in their steady
state, we put the target load on the servers without taking
measurements during the warm-up phase and then measure
the power consumption every minute, i.e., we take 20 samples
during the measurement phase.

B. Power Consumed by Chassis

We measure the power consumed by the PC under the condi-
tion where all the CPU cores are idle and the NIC is connected
to an Ethernet switch but no frames are sent or received. The
averages of the power consumption of servers 1, 2, and 3
are 68.43, 34.20, and 117.82 [W] and their two-sided 95%
confidence intervals are [34.09, 34.30], [68.24, 68.62], and
[117.62, 118.02], respectively. Since the confidence intervals
are narrow enough, we determine Φchassis for servers 1, 2, and
3 to be 34.20, 68.90, and 117.82 [W], respectively.

C. Power Consumed by CPU Devices

1) Overview: Modern CPU devices employ several power
management states to achieve energy-efficient computing.
Therefore, we hypothesize that CPU devices consume power in
proportion to their loads if they are highly loaded. To validate
the hypothesis, we carefully model several power management
states that a modern CPU device employs. Our CPU power
consumption model estimates the power consumed by multiple

multicore CPU devices by incorporating power management
states inside each CPU core and device. We briefly describe the
power management states of CPU devices and strategies for
controlling the power management states. Then, we build the
CPU power consumption model. Finally, we validate it on the
basis of empirical measurements and determine the parameters
of the model for several commercial CPU devices.

2) CPU Power Management States: Modern CPU devices
have two kinds of power management states, low-power idle
states (C-states) and performance states (P-states) [19].

The C-states are used to save the power at idle time. When
a CPU core is idle, it enters one of idle states, which are
numbered from C1 to Cn states. When tasks arrive, it reverts
to the active state, which is referred to as the C0 state. A CPU
core has several idle states, e.g., C1, C3, and C6 for E5620,
E3-1220, and 9520 processors, and a CPU core in a higher
numbered C-state requires less power. We model those idle
states together and thus simply refer to the idle states as the
C1 state, hereafter. In the case of multicore CPU devices, there
are several restrictions on controlling C-states. A CPU device
has a per-device C1 state, which is a power saving state for the
entire CPU device, and each CPU core has a per-core C1 state.
Each CPU core can enter its per-core C1 state independently
of other CPU cores, whereas an entire CPU device can enter
its per-device C1 state only if all its CPU cores are in their
per-core C1 states.

In contrast to the C-states, the P-states are used for reducing
the power consumption while the CPU device is active, i.e.,
the C0 state. While a CPU core is working in the C0 state,
its power consumption depends on the P-states, which are
pairs of the selected operating voltages and frequencies. A
CPU device has several P-states numbered from P0 to Pn. For
instance, an E5620 processor has seven P-states, P6 to P0, with
frequencies ranging from 1.6 to 2.4 GHz. The P0 state is the
highest performance state, i.e., the highest operating frequency,
voltage, and power consumption. In subsequent P-states, the
operating frequency and voltage are progressively reduced in
tandem. Note that, in a similar way to the per-device C-states,
the P-states are per-device states and thus they affect all CPU
cores in a CPU device, i.e., all CPU cores work at the same
frequency. The power management using the P-states is also
referred to as dynamic voltage and frequency scaling (DVFS).

3) Strategy for Controlling CPU Power Management
States: In order to build a power consumption model of
multiple multicore CPU devices, we have to model i) a strategy
for assigning the load incurred for processing NDN packets
to multiple CPU devices and cores, and ii) a strategy for
controlling P-states according to the load on each CPU core.
We craft those strategies so that the number of active CPU
devices and cores would be minimized.

We assume that a PC platform has Ncpu identical CPU
devices, each of which has Ncore identical CPU cores. The
CPU devices offer a set of P-states P and the operating
frequency in the P-state p (p ∈ P) is hp. We denote the highest
performance P-state (P0 state) as p0, i.e., the highest operating
frequency of the CPU device is hp0 . We use CPU cycles per
second to measure the CPU load [cycle/s]. Since a CPU core
working in the P-state p can process a hp CPU workload per

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

5

second [cycle/s], the processing capacity of a CPU core is
equivalent to its operating frequency.

Regarding strategy i), the load for processing NDN packets,
cndn, is assigned to CPU devices, so that the number of active
CPU devices ncpu is minimized. Since the power consumption
of a CPU device increases steeply when any of CPU cores
enter their per-core C0 state, which results in the transition of
the entire CPU device to its per-device C0 state, minimizing
ncpu is a good strategy for minimizing the energy consumed
by CPU devices. To minimize ncpu, all CPU cores of the
ncpu − 1 CPU devices, which have Ncore CPU cores, must
work at their maximum frequency hp0 . Therefore, using a
ceiling function, ncpu is expressed as

ncpu =

⌈
cndn

Ncorehp0

⌉
. (2)

In this case, ncpu − 1 CPU devices are fully utilized, i.e., all
Ncore CPU cores in the ncpu − 1 CPU devices process NDN
packets at their maximum frequency hp0 . Therefore, the load
processed by those fully utilized ncpu − 1 CPU devices is
(ncpu − 1) ·Ncorehp0 and the remainder of the load,

cdevice = cndn − (ncpu − 1) ·Ncorehp0 , (3)

is processed by the least loaded CPU device.
The load cdevice is assigned to CPU cores in the least

loaded CPU device so that the number of active CPU cores
is minimized. Since the power consumption of a CPU core
is also a concave increasing function of its load, as shown
in Section IV-C5, it is preferable to assign as much load as
possible to ncore − 1 CPU cores and the remainder to another
one. The number of active CPU cores ncore in the least loaded
CPU device is expressed as

ncore =

⌈
cdevice
hp0

⌉
=

⌈
cndn − (ncpu − 1) ·Ncorehp0

hp0

⌉
. (4)

In this case, Ncore CPU cores in the ncpu − 1 CPU devices
and ncore − 1 CPU cores in the least loaded CPU device
process NDN packets at their maximum frequency hp0 . Hence,
the least loaded CPU core in the least loaded CPU device
processes the load ccore and it is calculated as

ccore = cdevice − (ncore − 1)hp0

= cndn − ((ncore − 1) + (ncpu − 1) ·Ncore) · hp0 . (5)

Next, we define a strategy for selecting P-states for the
least loaded CPU device according to the CPU load cdevice.
We construct the strategy so that the operating frequency is
increased if the utilization of a CPU core, which is defined as
the CPU load divided by the processing capacity of the CPU
core, exceeds a threshold θ. Such a strategy is often used
in the current operating systems. For instance, an advanced
configuration and power interface (ACPI) CPU driver employs
this strategy. The P-state for the load cdevice is modeled as,

p(cdevice) =

p0 if

cdevice
hp0

≥ θ

argmink hk s.t.
cdevice
hk

< θ otherwise.

(6)

For instance, the threshold θ is defined as 0.8 for the
“conservative” mode in the ACPI CPU driver embedded in
Linux kernels [20]. If the utilization cdevice/hp0 exceeds the
threshold θ, the P-state of the CPU device is set to p0. In this
case, all CPU cores work at the maximum frequency hp0 since
P-states are per-device states.

4) CPU Power Consumption Model: The power consumed
by a CPU device ϕcpu [W] is determined by the load incurred
for processing NDN packets cndn as

ϕcpu(cndn) = Φncore,p ·
(
ccore
hp

)σncore,p

+

ncore−1∑
k=1

Φk,p

+Φ · (ncpu − 1). (7)

The first and second terms on the right hand side are the power
consumption of the least loaded CPU device and the third
one is that of the fully utilized CPU devices. Since the power
consumption of the fully utilized CPU devices, Φ, is constant,
the total power consumption of the (ncpu − 1) fully utilized
CPU devices is simply derived as Φ·(ncpu−1). In contrast, the
power consumption of the least loaded CPU device depends
on its P-state. Since the P-states are the per-device states, the
P-state of the CPU cores in the least loaded CPU device are
the same and p is derived by using Eq. (6). The second term
is the power consumed by fully utilized CPU cores in the
least loaded CPU device. Our empirical measurements show
that the maximum power consumption of CPU cores differs
slightly depending on the number of active CPU cores though
the CPU cores are identical and all of them are operated at the
same frequency hp. Therefore, we model the maximum power
consumption of CPU cores as Φncore,p, which indicates the
maximum power consumption of a CPU core in the case that
ncore CPU cores are active and their P-states are p. To derive
the power consumption of the fully utilized CPU cores, we
use their sum from k = 1 to ncore− 1. Note that if ncore = 1,
the second term is zero, and otherwise p is always p0 because
the P-states are per-device states. Therefore, for deriving the
second term in Eq. (7), we need only Φncore,p in the case where
p = p0. We describe our empirical measurement of Φncore,p0

in the following subsection.
Finally, we explain the first term on the right hand side

of Eq. (7), which indicates the power consumed by the least
loaded CPU core in the least loaded CPU device. This depends
on its P-state p and the load ccore. Therefore, to derive this, we
have to model the C-states, i.e., the power consumption when
the CPU cores transit between the C0 and C1 states depending
on the load ccore, and the P-state, i.e., the power consumption
of the CPU core for each P-state while the CPU core is in the
C0 state. Our model is based on the power consumption model
of a single core CPU device proposed in [10], which models
the C-states as ((1 − c/hp) · (Φ(p)

i)1/σ + c/hp · (Φ(p)
a)1/σ)σ ,

where Φ
(p)
i and Φ

(p)
a are the power consumption of a CPU

core with the P-state p in the C1 and C0 state, respectively.
The constant parameter σ determines the shape of the power
consumption curve. The case σ = 1 corresponds to the ideal
case, where there is no overhead when entering or exiting the
idle state. In reality, a latency exists when reverting from the
C1 state to the C0 state and a certain amount of power is

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

6

TABLE I: Parameters of ϕcpu(cndn) for E5620 Processor

ncore hp [GHz] ν Φa min σncore,p Φncore,p

1

1.6

1.35 · 103 16.86

0.30 24.33
1.73 0.13 25.08
1.87 0.15 25.88
2.0 0.065 26.66

2.13 0.14 27.49
2.27 0.074 28.36
2.4 0.12 29.22

2 2.4 - - 0.84 5.94
3 2.4 - - 0.74 5.37
4 2.4 - - 0.81 6.51

consumed during the transition. Thus, the power consumption
is an increasing concave function of the load λ, i.e., the
parameter σ for a current CPU device satisfies 0 < σ < 1.
To model the P-states, i.e., the maximum power consumption
Φ

(p)
a in the case of the P-state p, this model uses the following

equation, Φ
(p)
a = (Φ

1/ν
amin + (Φ

1/ν
amax − Φ

1/ν
amin) · hp/hp0

)ν ,
where Φamax and Φamin are the maximum and minimum
power consumptions in the C0 state. The constant parameter
ν determines the shape of the power consumption curve. The
case ν = 1 corresponds to dynamic frequency scaling and
ν = 2 corresponds to dynamic voltage scaling. For DVFS, ν
is greater than 2.

We extend this model to multiple multicore CPU devices
assuming that the CPU power management is performed as
discussed in the previous subsection. We set Φ(p)

i to 0 since
the power consumption of the current CPU’s idle cores is
near-zero independent of other cores [21]. Then, we apply
the model [10] to the least loaded CPU core. The first term
of Eq. (7) is based on the C-state model in [10]. According to
the observations found in our empirical measurements below,
we define the parameters σncore,p for each P-state p and
the number of active CPU cores ncore instead of using a
single parameter σ. The constant Φn,p is the maximum power
consumption of the n-th CPU core for a given P-state p in the
case that n− 1 CPU cores are fully utilized. Φncore,p [W] can
be derived as

Φncore,p =

(
Φ

1
ν

a min +
(
(Φncore,p0)

1
ν − Φ

1
ν

a min

)
· hp

hp0

)ν

,

(8)
where Φa min is the minimum power consumption of the CPU
core in the C0 state. The constant ν is a parameter to determine
the maximum power consumption of the CPU core for each
P-state. Eq. (8) is used to derive Φn,p since P-state adaptation
is applied only when the number of active CPU cores is one,
we apply Eq. (8) for the case of ncore = 1 and otherwise we
use the empirically measured value for Φn,p0 .

5) Validation and Parameter Fitting: To derive the con-
stants in Eqs. (7) and (8), we measure the power consumption
by running a program that performs an infinite loop containing
only arithmetic operations and a sleep operation to avoid
access to any hardware devices other than the CPU. We
vary the CPU load by changing the sleep time. The derived
parameters are summarized in Tables I, II, and III.

First, to derive the parameters σncore,p and Φncore,p in the
case of ncore = 1, we measure the CPU power consumption
for each P-state by changing the CPU load. The measured and

TABLE II: Parameters of ϕcpu(cndn) for E3-1220 Processor

ncore hp [GHz] ν Φa min σncore,p Φncore,p

1

1.6

1.89 · 103 3.63

0.46 6.25
1.8 0.40 6.69
2.0 0.32 7.16
2.2 0.38 7.66
2.4 0.36 8.20
2.6 0.40 8.78
2.8 0.38 9.39
3.1 0.48 10.40

2 3.1 - - 0.59 5.71
3 3.1 - - 0.69 6.86
4 3.1 - - 0.56 5.24

TABLE III: Parameters of ϕcpu(cndn) for 9520 Processor

ncore hp [GHz] ν Φa min σncore,p Φncore,p

1
1.066

2.58 0.00
0.68 2.23

1.6 0.78 6.35
1.733 0.34 7.80

2 1.733 - - 0.55 3.92
3 1.733 - - 0.74 1.39
4 1.733 - - 0.34 1.21

estimated power consumption of the E5620 processor (server
1) for each operating frequency (P-state) is shown in Fig. 2.
The horizontal axis shows the offered CPU load normalized to
the maximum processing capacity and the vertical axis shows
the power consumption. Cross markers and error bars indicate
the mean of 20 measured results and 95% confidence intervals.
Since the confidence intervals are considerably small for our
measurements, as shown in Fig. 2, the confidence intervals
for the CPU power measurements are omitted, hereafter. We
derive σncore,p with least squares approximation. The signif-
icance of the regression is measured by the coefficient of
determination, R2 = 1 −

∑
i(yi − mi)/

∑
i(yi − ȳ), where

yi denotes the sample value with mean ȳ whereas mi is
the modeled value, and R2 is shown in each graph. Due to
space limitations, we omit graphs for the E3-1220 and 9520
processors. The tendencies of the fitting results of the E3-
1220 and 9520 processors are the same as that of the E5620
processor. R2 of the fitting results for the E3-1220 processor
in the case of hp = 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, and 3.1
GHz are 0.934, 0.946, 0.856, 0.922, 0.978, 0.981, 0.945, and
0.954, respectively. Those for the 9520 processor in the case
of hp = 1.066, 1.6, and 1.73 GHz are 0.911, 0.899, and
0.919, respectively. Since R2 of the fitting results are high,
we determine the parameters σncore,p and Φncore,p in the case
of ncore = 1, as shown in Tables I, II, and III.

Next, to derive σncore,p in the case that ncore is more than
1, we measure the power consumption of the n-th CPU core
by changing the load on the core. During the measurement
of the n-th CPU core, the other n − 1 CPU cores are fully
utilized and the remaining CPU cores are kept idle. Since the
P-state of all CPU cores is p0 when more than one CPU core
is active, we measure the power consumption in the case of
the P-state p0. The measured and fitted results for the E5620
are shown in Fig. 3. The meanings of the axes and markers
are the same as those in Fig. 2. R2 of the fitting results for
the E3-1220 processor in the case of ncore = 2, 3, and 4 are
0.891, 0.870, and 0.699, and those for the 9520 processor are
0.929, 0.998, and 0.913.

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

7

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.949)

Measured Result

(a) 1.6 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.669)

Measured Result

(b) 1.73 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.773)

Measured Result

(c) 1.87 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.604)

Measured Result

(d) 2.0 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.321)

Measured Result

(e) 2.13 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load
P

o
w

e
r

[W
]

Fitted Result (R
2
 = 0.604)

Measured Result

(f) 2.27 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o

w
e
r

[W
]

Fitted Result (R
2
 = 0.793)

Measured Result

(g) 2.4 GHz

Fig. 2: Power Consumed by CPU (E5620) Cores at Each P-state

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.999)

Measured Result

(a) ncore = 2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.927)

Measured Result

(b) ncore = 3

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.994)

Measured Result

(c) ncore = 4

Fig. 3: Power Consumed by CPU (E5620) in the Case of ncore ≥ 2

To derive the parameters ν and Φa min, we measure the
power consumption for each P-state when a CPU core is fully
utilized and the other CPU cores are kept idle. The measured
power and the fitted model are shown in Fig. 4. The hori-
zontal axis shows the operating frequency normalized to the
maximum frequency of each CPU core. R2 of each regression
is shown in each graph. Though the error between fitted and
measured power consumption of the E5620 processor with
operating frequency of 2.13 and 2.27 GHz is large, R2 is high.
R2 of the fitting results for the E3-1220 and 9520 processors
are 0.951 and 0.995, respectively. Therefore, we derive ν
for the E5620, E3-1220, and 9520 processors as 1.35 · 103,
1.89 · 103, and 4.22 and Φa min for the E5620, E3-1220, and
9520 processors as 16.86, 3.63, and 0.00, respectively.

Finally, we show the CPU power consumption of the E5620,
E3-1220, and 9520 processors as estimated by our model
in Fig. 5. The horizontal axis shows the offered CPU load
normalized to the maximum processing capacity, cndn/hp0 ,
of each CPU core and the vertical axis shows the power
consumption. The significance of the estimation has been
shown as the coefficients of determination, R2, of the fitting

0 1.6 2 2.4
0

5

10

15

20

25

30

Operating Frequency [GHz]

P
o

w
er

 [
W

]

Fitted Result (R
2
 = 0.679)

Measured Result

Fig. 4: Maximum Power Consumed by one CPU Core (E5620)
in Each P-state

results in Figs. 2 to 4. Since modern CPU devices employ
several power management states, they are almost energy-
proportional to their loads in the case that two or more
CPU cores are active. That is, the power consumption of the
CPU devices are approximately modeled as a linear function
to their loads. We derive a coefficient and an intercept of
the linear function by using linear regression. The power
consumption of the E5620 processor is approximately modeled

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

8

0 1 2 3 4
0

10

20

30

40

50

Normalized CPU Load

P
o
w

e
r

[W
]

Estimated Power
Measured Power

(a) E5620 Processor

0 1 2 3 4
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Estimated Power
Measured Power

(b) E3-1220 Processor

0 1 2 3 4
0

5

10

15

20

Normalized CPU Load

P
o
w

e
r

[W
]

Estimated Power
Measured Power

(c) 9520 Processor

Fig. 5: Power Consumption by CPU Device

as ϕcpu(cndn) = 5.88·cndn/hp0+23.58 and R2 is 0.997. In the
same way, the power consumption of the E3-1220 and 9520
processors are modeled as ϕcpu(cndn) = 5.85·cndn/hp0+5.43
with R2 = 0.979 and ϕcpu(cndn) = 1.65·cndn/hp0+8.15 with
R2 = 0.943, respectively.

D. Power Consumed by Memory Device

We formulate the power consumed by accessing data in the
DDR3 device ϕmem(rmem) [W] as a function of the average
number of bytes accessed per second rmem [byte/s] as follows:

ϕmem(rmem) = Ψmem · rmem, (9)

where Ψmem is the energy [joule] consumed to read/write
one byte of data from/to the DDR3 device [joule/byte]. Since
currently available DDR3 devices do not have DVFS, their
power consumption is proportional to the access rate to the
devices [22]. Hence, we model the power consumption of the
DDR3 device as a linear function to the access rate rmem. Note
that the power consumed constantly by the DDR3 device, such
as the power for refreshing registers, is included in the power
consumed by the chassis Φchassis.

To validate that the power consumed by accessing the
DDR3 device is proportional to the rate of accessing it and to
derive the constant Ψmem in Eq. (9), we run a program that
repeatedly reads 8 byte data from the array allocated by the
malloc function. In general, the DDR3 power consumption
for writing and reading data is slightly different but the
difference is small. For instance, writing a page to a DDR3
device operating at 1333 MHz consumes 61 nano-joule while
reading does 56 nano-joule [22]. Since we measure the power
consumed for reading the DDR3 device and estimate Ψmem

based on the measured results, our model may underestimate
the power consumed by the DDR3 device. However, the
error is at most about 8% according to [22]. Furthermore,
the DDR3 device accounts for the small proportion of the
total power consumption of the servers. Therefore, the error
might be much smaller. The average number of bytes accessed
in the DDR3 device per second is measured by the Intel R⃝

Performance Counter Monitor. Since all three servers 1, 2, and
3 have DDR3 devices, we use server 2 for this measurement.
We derive the power consumed by accessing the DDR3 device
by subtracting the power consumed by one active CPU core
(10.40 [W]) from the measured power.

Figure 6 shows the power consumed by the DDR3 device
at various byte access rates [byte/s]. We derive the constants
Ψmem by using the least squares approximation. Since the
confidence intervals of each measured result are small and R2

is close to 1, we decide on Ψmem to be 0.61·10−9 [joule/byte].

E. Power Consumed by NIC

We formulate the power consumed by the NIC ϕnic(λip)
[W] as a function of the IP packet forwarding rate λip

[packet/s] as

ϕnic(λip) = Ψnic · λip, (10)

where Ψnic is the energy [joule] consumed by the NIC for
forwarding one IP packet [joule/packet]. Though the power
consumed by a currently available NIC may not be energy-
proportional, its power consumption in general is much smaller
than that of a CPU device [23]. Even though we model it as a
linear function to its load, the error between the estimated and
measured power consumption might be small enough, which
is validated by our empirical measurements below.

We measure the power consumed by the NIC at various rates
in the following way. The three PCs are connected by 10 Gbps
Ethernet links. One PC is used as an IP router and the other
two act as a client and server, respectively. The client sends
UDP packets at various rates by running a simple program
that switches between sending a UDP packet and sleeping.
We measure the power by choosing 1500 bytes as the size of
the IP packets.

Figure 7 shows the power consumed by the NIC. The
horizontal axis shows the packet forwarding rate [packet/s].
Cross markers and error bars indicate the mean and 95%
confidence intervals of measured results. We derive the con-
stant Ψnic as 1.26 ·10−5 [joule/packet] using the least squares
approximation. The power does not appear to be exactly
proportional to the IP packet forwarding rate since the power
consumed by the NIC is small and thus the fluctuations in the
measured values become relatively large. However, we assume
that the power is proportional to the forwarding rate λip. This
is because the confidence intervals of each measured result
are small and R2 is close to one, and thus errors between the
actual and estimated values would be negligible.

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

9

0 2 4 6 8 10 12
0

2

4

6

8

Access Rate [Gbyte/s]

P
o
w

er
 [

W
]

Fitted Result (R
2
 = 0.989)

Measured Result

Fig. 6: Power Consumed by DDR3 Device

 0 50000 100000 150000
0

0.5

1

1.5

2

Packet Forwarding Rate [packet/s]

P
o
w

er
 [

W
]

Fitted Result (R
2
 = 0.878)

Measured Result

Fig. 7: Power Consumed by NIC

V. PACKET FORWARDING ANALYSIS

This section describes the method of calculating values of
the three parameters cndn, rmem and λip in order to derive
the average power consumed by a PC-based multicore NDN
software router. The rest of this section describes how average
values of the three parameters are calculated from the average
input Interest packet rate λndn [packet/s] and cache hit rate
πhit of the NDN router.

A. IP Packet Forwarding Rate

The average IP packet forwarding rate λip [packet/s] is
calculated by the following function of λndn and πhit:

λip(λndn, πhit) = λndn · (2− πhit). (11)

λip is calculated assuming that Interest and Data packets are
encapsulated by IP packets. Since Interest and Data packets
are one-for-one and their flow balances are strictly maintained
in NDN [24], we can calculate the average number of Interest
and Data packets received and sent per second as follows. The
router receives λndn Interest packets from downstream routers
per second. λndn ·πhit Data packets are sent back to them per
second when Interest packets hit those in the CS. Otherwise,
λndn · (1 − πhit) Interest packets are sent (forwarded) to
upstream routers per second. Then λndn · (1 − πhit) Data
packets are received from the upstream routers and then they
are sent back to the downstream routers per second. Since
either an Interest or a Data packet is encapsulated by an IP
packet, λndn · (2 − πhit) IP packets are sent and the same
number of IP packets are received per second. It means that
λndn·(2−πhit) IP packets are forwarded. Thus, λip(λndn, πhit)
is λndn · (2− πhit).

TABLE IV: Memory Access Ratio

πhit 0.00 0.05 0.10 0.15 0.20 0.25
Γmem 35.67 33.77 32.72 32.23 30.27 28.63

B. Access Rate to DDR3 Device in Bytes

The average power consumed by the DDR3 device
rmem(λndn, πhit) [byte/s] is calculated by the following func-
tion of λndn and πhit:

rmem(λndn, πhit) = λndn · Sndn · Γmem. (12)

This subsection describes how rmem(λndn, πhit), i.e., the av-
erage number of bytes accessed in the DDR3 per second, is
derived. Since it is difficult to precisely calculate how many
bytes the NFD code accesses in the DDR3 device at run time,
we estimate it in the following way: first, we measure how
many bytes are accessed in the DDR3 device by observing a
communicating NFD router. We derive the ratio of the number
of accessed (read or written) bytes in the DDR3 to the bytes of
information pieces that are retrieved. Γmem in Eq. (12) is this
ratio. For example, if Γmem is 10, when a 1 GB of information
is retrieved, the NFD router is assumed to access 10 GBs in
the DDR3 device.

Second, we assume that the above ratio is always the same
for any NFD packet. Here, since λndn · Sndn is the average
number of bytes retrieved in information pieces, Eq. (12)
estimates the number of bytes per second accessed in the
DDR3 device. We measure the average number of bytes per
second accessed in the DDR3 device during the experiments
in Section V-B.

We measure Γmem when πhit are 0.00, 0.05, 0.10, 0.15, 0.20
and 0.25. When an Interest packet hits a Data packet in the
CS, the CS is accessed only once for lookup the corresponding
Data packet, but when an Interest packet does not hit any
packet in the CS, the CS is accessed twice for the Data packet
lookup and insertion. Thus, as shown in table IV, Γmem is
small in highly πhit since CS is stored in the DDR3 device in
NFD.

C. CPU Cycles

The average power consumed by the CPU device is deter-
mined by the average number of CPU cycles. This subsection
describes how to calculate cndn(λndn, πhit) as a function of
λndn and πhit. First, we classify all the blocks in the NFD
source code described in Fig. 1 into the following three
groups of blocks so that the average number of CPU cycles
is calculated from the cache hit rate of the router:

• The group of blocks F1: The block is always run when
an Interest packet is received. This group includes the
blocks B1, B2 and B7.

• The group of blocks F2: The block is run only when an
Interest packet hits a Data packet contained in the CS.
This group includes the block B3.

• The group of blocks F3: The block is run only when an
Interest packet does not hit any Data packet contained in
the CS. This group includes the blocks B4, B5 and B6.

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

10

TABLE V: The Numbers of Average CPU Cycles

Block B1 B2 B3 B4 B5 B6 B7

CPU Cycles 21,426 19,147 3,868 20,443 16,398 83,198 7,973

Thus, the individual terms
∑

f∈F1
Cf ,

∑
f∈F2

Cf , and∑
f∈F3

Cf , where Cf is the average number of CPU cycles
to execute a block f , are totals of the CPU cycles consumed
to execute all the blocks in the group for processing one
pair of an Interest packet and the corresponding Data packet.
Since an Interest packet corresponds one-to-one with a Data
packet,

∑
f∈F1

Cf +πhit ·
∑

f∈F2
Cf +(1−πhit) ·

∑
f∈F3

Cf

calculates the average CPU cycles with the cache hit rate
πhit when one Interest packet is received. Therefore, the
CPU cycles incurred for processing NDN packets per second
cndn(λndn, πhit) [cycle/s] is expressed as

cndn(λndn, πhit) = λndn ·

∑
f∈F1

Cf + πhit ·
∑
f∈F2

Cf

+(1− πhit) ·
∑
f∈F3

Cf

 . (13)

D. CPU Cycle Measurements

We measure the average number of CPU cycles of each
group as follows. We connect three PCs via a 10-Gigabit
Ethernet switch. One PC acts as an NFD router and two PCs
act as a client and a server, respectively. The parameters at the
NFD layer are chosen as follows. The length of the content
name is 9 characters and the number of name components is
2. The size of each chunk is 1 KB.

To measure the CPU cycles required for each block, i.e.,
B1 to B7, the NFD software on the router is run by adding an
RDTSC (Read Time-Stamp Counter) instruction, which reads
a time stamp counter, a register incremented by CPU cycles in
order to measure how many CPU cycles each group consumes.
Table V shows the average CPU cycles of the 7 blocks.

E. Estimation Accuracy for One CPU Core

To validate the combination of the equations developed by
Sections IV and V, each of which have been already validated
in the previous sections, we compare the power estimated by
the model and that actually measured by running the NFD code
on the PC-based platform at various Interest packet rates. Since
the NFD code does not support HP-UX (server 3), we use
servers 1 (E5620 processor) and server 2 (E3-1220 processor)
in the following experiments. During the measurement, one
CPU core is used because the NFD code is single-threaded.
The measurements are performed under the same conditions
as those in Section IV. The model slightly underestimates the
power consumption for both servers 1 and 2 because the model
does not incorporate the power consumption other than for the
NFD code. That is, several essential programs for operating
Linux, such as the kernel and daemons, consume a certain
amount of power, which is not included in the estimated power
consumption. Although the model underestimates the power

consumption, the errors between the measured and estimated
power stay within a reasonable range for both servers 1 and
2. We measure the significance of the model by the root
mean square error (RMSE). The RMSE values for server 1
in the case of πhit 0, 0.1, and 0.2 are 7.75, 8.74, and 8.32,
respectively. The RMSE values for server 2 in the case of πhit

0, 0.1, and 0.2 are 3.50, 3.33, and 2.68.

VI. CASE STUDY

A. Power Consumption Model of Well-engineered NDN Router

In order to analyze power consumption in commercial
networks, in this paper, we select the well-engineered NDN
router [4] and develop its power consumption model. Since the
NDN source code runs on a PC-based card that has an Intel R⃝

CPU processor, we estimate the number of the CPU cycles
of its function blocks assuming that it runs on the PC-based
hardware platform which this paper models. The numbers are
calculated from the numbers reported in [4].

The CPU cycle numbers of processing an Interest packet
are calculated as follows: first, the total number of processing
an Interest packet is calculated as 2438.68 from the average
Interest packet forwarding rate. Second, the numbers of PIT
Process B1 and CS Lookup B2 are calculated as 421.96 as
follows: the well-engineered NDN code uses Siphash as the
hash function and the number of CPU cycles of lookup for
this hash table is 421.96 [4]. Assuming that the computation
of looking up the hash table for the PIT and CS accounts for
a large portion of the total computation, we decide the CPU
cycle number of the blocks B1 and B2 to be 421.96. Finally,
the CPU cycle number of Interest Forwarding B4 is calculated
by subtracting the sum of CPU cycle numbers of B1 and B2

from 2438.68.
The CPU cycle numbers of processing a Data packet is as

follows: first, the total number of processing a Data packet
is calculated as 995.90 from the average Interest packet
forwarding rate. Second, the CPU cycle number of Receive
Data B5 and CS Lookup & Insert B6 is assumed to be 421.96
because the blocks look up once the hash tables for the PIT
and the CS. Third, the CPU cycle number of Fetch Data B3

is assumed to be 0 because no hash computation is needed for
this block. Finally, the CPU cycle number of Send Data B7

is calculated as 151.98 by subtracting the CPU cycle numbers
of B5 and B6 from 995.90.

B. Scenario

This subsection describes the scenario of the case study.
Three network topologies are used. The first topology is
a line topology of three routers, where the most upstream
router is connected by an information server and the most
downstream router is connected by a client of sending Interest
packets. We use the high-performance server computer with
two E5620 processors as the hardware platform for all three
routers in this topology. The second network topology is a
tree topology, consisting of a root router, which is connected
by an information server, and 2 middle routers and 2 × 4
edge routers. The tree topology is chosen because current

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

11

ISP (internet service provider) access networks employ a tree-
based topology and because the NDN caching functions reduce
the amount of traffic more effectively in access networks than
core networks [18]. We use the low-energy server with one E3-
1220 processor for the edge routers and the high-performance
server with two E5620 processors for the middle and root
routers since the middle and root routers have to forward
more traffic than the edge routers. The third network topology
is the Abilene topology, which consists of 9 routers and is
an example of a core network. We use the high-performance
server with two E5620 processors for all routers in the Abilene
topology.

Since video traffic accounts for a large portion of the current
Internet traffic, 10 MB is selected as the size of an information
piece stored at the server based on a recent study by Zhou et
al., which estimates that there are currently 5 · 108 YouTube
videos with an average size 10 MB [25]. The number of
information pieces G is 160,000 because the Web access logs
measured in a medium-size city in the U.S. [26] show that
the average number of Web pages requested in a day is about
160,000. Each information piece is divided into chunks with
the size of 1024 bytes.

The number of CSs of each router is determined depending
on the number of CPU cores M . The CS of each router is
divided into equal sized M independent CSs. To simplify the
notation, we will refer to the divided CS as sub-CS, hereafter.
Each sub-CS is individually assigned to each CPU core. This
means that the number of threads is M as well. The total size
of the CS is changed from 1 GB to 256 GB.

Whole name space of all the information pieces is divided
into equal sized M name spaces and each name space is
assigned to one of the sub-CSs. Then, we make two as-
sumptions so that information pieces of the same popularity
distribution are handled by M independent caching algorithms.
One assumption is that the popularity of the information pieces
at the individual sub-CSs, i.e., in the individual name spaces,
are the same. The popularity of information pieces in each
name space follows the Zipf distribution with the parameter
α = 0.8 [25]. The other assumption is that caching algorithms
are independently executed under the IRM (independent ref-
erence model) for sub-CSs and thus requests for information
pieces arrive independently at individual sub-CSs according
to independent Poisson processes with mean rate λm = λ/M ,
where λ is the mean rate of requests for all information pieces
which arrive at the router.

We calculate the cache hit rates of routers in the three
topologies on the basis of a model proposed by Martina et
al. [27], which analyzes the cache hit rate of each information
piece for a FIFO cache under the IRM. By using the model,
we derive the cache hit rate of the k-th popular information
piece at each sub-CS πm,k. Then, the expected cache hit rate
of the sub-CS πm is derived from the mean of πm,k weighted
by the arrival rate of each information piece, λm,k. In the
same way, the expected cache hit rate of the CS π is derived
from the mean of πm weighted by its arrival rate λm. To
derive the cache hit rates of upstream routers, we assume
that the forwarding process of the k-th popular information
piece of each caching algorithm toward an upstream router

Fig. 8: Power Consumption in Line Topology

is also an independent Poisson process with a mean rate of
ωm,k = λm,k · (1 − πm,k). The mean arrival rate of the k-
th popular information piece at an upstream router is simply
derived from the sum of the arrival rate of forwarded processes
from downstream routers ωm,k. Therefore, we can calculate
the cache hit rates of upstream routers by applying the model
in [27].

C. Power Reduction Analysis

This section analyzes the power consumption of networks
under the following conditions. First, in the case of the line
and tree topologies, cache functions are placed as follows:

• case1-1-1: Cache functions are placed at all (1st, 2nd and
3rd) routers.

• case1-1-0: Cache functions are placed at the edge (1st)
and intermediate (2nd) routers.

• case1-0-0: Cache functions are placed at only the edge
(1st) routers.

• case0-0-0: Cache functions are placed at none of the
routers.

Second, the CS size is changed from 1 GB to 256 GB for
the line topology and the CS size of the tree topology is 64
GB. Third, the average Interest packet rate to the edge router is
5,493,165 [packet/s] for the line topology. This corresponds to
45 Gbps of the information retrieval rate from the information
server. The number of active CPU cores of the three routers is
8. In contrast, that to the edge routers is changed for the tree
topology so that the average Interest packet rate to the root
router ranges from 0 to 5,493,165 [packet/s].

Figures 8 and 9 show the power consumption and the cache
hit rates of the three routers in the line topology, respectively.
In contrast, Fig. 10 shows the power consumption in the tree
topology when the CS size is 64 GB and the average Interest
packet rate is changing.

Next, we focus on a general core network topology, using
the Abilene topology as an example. An information server
is placed at Atlanta and a client is connected to a router in
every other city. The interest packet rate (packet/s) of each
client is determined according to the population of the city.
The total information retrieval rate is from 0 to about 45 Gbps.
The other conditions are the same as those of the analysis
in the tree topology. Figure 11 shows the power both when

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

12

Fig. 9: Cache Hit Rates in Line Topology

Fig. 10: Power Consumption in Tree Topology

cache functions are placed at all the routers (With-Cache) and
at none of the routers (Without-Cache). Caching reduces the
power consumed by the Abilene network even if the network
is not a simple hierarchical topology.

We note the following observations about the above figures.
First, caching reduces the power consumption compared with
that without caching in all the topologies. For a more detailed
analysis, we analyze how the devices consume power and how
the blocks for caching and forwarding consume power at the
CPU device. Figure 12 shows the power of the above devices
and the above functions in the case that the Interest packet
rate of each client is 5,493,165 [packet/s] (45 Gbps) for the
line topology and the CS size is 64 GB.

This figure helps us understand the tradeoff relation. The
positive effects are two-fold: First, the traffic reduction due to
caching reduces the power consumed by the NIC and memory
devices of upstream routers. As shown in Fig. 12, the total
power consumption of these devices is reduced. Second, the
number of CPU cycles consumed by the blocks B4 and B5 of
the CPU devices of all routers is reduced because the number
of Interest packets is reduced. In contrast, a negative effect
is that all routers consume CPU cycles of the blocks B2 and
B6 for caching. It is clear that the power reduction due to the
positive effects is larger than that of the power increase due
to the negative effects.

Second, the cache hit rates of the 2nd and 3rd routers are
still several percent and thus the power is reduced when cache
functions are placed at upstream routers. However, the power

Fig. 11: Power Consumption in Abilene Topology

Fig. 12: Power Consumption of Devices with and without
Caching

reduction caused by cache functions at the upstream routers
is not remarkable. Thus, it is considered that placing caches
only at edge routers is enough for simple networks such 3
level line and tree topologies.

Third, the amount of power reduction compared with the
total power is roughly in proportion to the load on the network,
i.e., the total packet rate, as shown in Fig. 10. The ratio
increases when an NDN network is becoming highly loaded.

D. Lessons Learned

Important lessons are learned from the observations.
An important requirement for power reduction is that the

power consumed by devices in routers need to be in proportion
to the traffic load because the traffic reduction due to caching
is beneficial to reduce the power consumed by these devices.
A multicore software router is a good example of such routers
because its CPU, memory and NIC devices consume power in
proportion to the load on the devices.

Under the assumption that the power consumption of routers
is in proportion to their traffic load, we revealed the tradeoff
relation of the power consumption of caching as follows: The
power increase due to caching comes from the CPU power
consumption for the computation of caching, i.e, CS Lookup
B2 and CS Lookup&Insert B6, at all routers. In contrast,
the power reduction due to caching comes from two part;
one is the NIC power consumption and the memory device
power consumption at upstream routers and the other is the
CPU power consumption for the computation of name-based

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

13

forwarding, i.e., Interest Forwarding B4 and Receive Data B5,
at downstream routers.

As an example case, we analyze power consumption in
commercial networks with NDN routers, which are so well-
engineered that the computation of caching is as light as that
of name-based forwarding. In this case, caching reduces the
power consumed by an NDN network. This is because in
such cases the power increase due to caching, which is the
cache computation, is smaller than the power reduction due
to caching, which is the reduction in name-based forwarding
computation. Furthermore, with the well-engineered routers,
caching is useful to reduce power consumption when the traffic
load in an NDN network is high. This means that the ratio of
power reduction due to caching to the power used without
caching is large when the traffic load is high. We believe that
this is a good feature of caching because reducing peak power
in the daytime is an important problem of the society.

Our technique for modeling the power consumed by NDN
routers is general enough for PC-based hardware platforms
and it is so useful to model power consumption by using just
a few parameters. With our power consumption model, we
reveal that the power consumed by name-based forwarding and
caching accounts for a large portion of the power consumed
by an NDN network. Although this may be partly because
the reference architecture does not use power hungry special-
ized devices for routers, it is important to understand how
NDN packet forwarding consumes power and to improve the
forwarding algorithm more precisely. Our power consumption
model can play an important role in this task.

VII. CONCLUSION

This paper developed a power consumption model of a mul-
ticore software NDN router focusing on the power consumed
by name-based forwarding and caching. We developed the
model from a PC hardware platform and an NFD source code
assuming that commercial multicore software routers and PC-
based routers consume the power similarly. We learned several
lessons about power-efficient NDN networks from develop-
ing a precise power consumption model. According to our
analysis, caching reduces the power consumption of an NDN
network if the power consumption of routers is proportional to
their traffic load and the computation of caching at the routers
is as light as that of name-based forwarding. We believe that
our power consumption model of an NDN router will play an
important role in developing such techniques.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, Jul. 2014.

[2] H. Yuan, T. Song, and P. Crowley, “Scalable NDN forwarding: Concepts,
issues and principles,” in IEEE ICCCN, Aug. 2012, pp. 1–9.

[3] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in Proceedings of the ACM SIGCOMM workshop on Information-
centric networking (ICN 2011), Aug. 2011, pp. 44–49.

[4] W. So, A. Narayanan, and D. Oran, “Named data networking on a router:
Fast and DoS-resistant forwarding with hash tables,” in In Proceedings
of ACM/IEEE ANCS 2013, Oct. 2013, pp. 215–226.

[5] G. Rossini, D. Rossi1, M. Garetto, and E. Leonardi, “Multi-terabyte
and multi-gbps information centric routers,” in In Proceedings of IEEE
INFOCOM, May 2014, pp. 181–189.

[6] N. Choi, K. Guan, D. C. Kilper, and G. Atkinson, “In-network caching
effect on optimal energy consumption in content-centric networking,” in
IEEE ICC, Jun. 2012, pp. 2889–2894.

[7] S. Imai, K. Leibnitz, and M. Murata, “Energy efficient data caching
for content dissemination networks,” Journal of High Speed Networks,
vol. 19, no. 3, pp. 215–235, Oct. 2013.

[8] T. Vogelsang, “Understanding the energy consumption of dynamic
random access memories,” in Proceedings of IEEE/ACM MICRO, Dec.
2010, pp. 363–374.

[9] T. Hasegawa, Y. Nakai, K. Ohsugi, J. Takemasa, Y. Koizumi, and
I. Psaras, “Empirically modeling how a multicore software icn router
and an icn network consume power,” in Proceedings of the 1st ACM
ICN, Sep. 2014.

[10] R. Bolla, R. Bruschi, A. Carrega, F. Davoli, D. Suino, C. Vassilakis, and
A. Zafeiropoulos, “Cutting the energy bills of internet service providers
and telecoms through power management: An impact analysis,” Com-
puter Networks, vol. 56, no. 10, pp. 2320–2342, Jul. 2012.

[11] R. Bolla, C. Lombardo, R. Bruschi, and S. Mangialardi, “DROPv2: En-
ergy efficiency through network function virtualization,” IEEE Network,
vol. 28, pp. 26–32, Mar./Apr. 2014.

[12] “NFD - named data networking forwarding daemon,” http://named-data.
net/doc/NFD/current.

[13] M. Fukushima, A. Tagami, and T. Hasegawa, “Efficient lookup scheme
for non-aggregatable name prefixes and its evaluation,” IEICE Trans. on
Communications, vol. E96-B, no. 12, pp. 2953–2963, Dec. 2013.

[14] U. Lee, I. Rimac, D. Kilper, and V. Hilt, “Toward energy-efficient content
dissemination,” IEEE Network, vol. 25, pp. 14–19, Mar. 2011.

[15] U. Lee, I. Rimac, and V. Hilt, “Greening the internet with content-
centric networking,” in Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking, ser. e-Energy ’10, 2010,
pp. 179–182.

[16] Hewlett-Packard Company, “DDR3 memory technology,”
http://h20000.www2.hp.com/bc/docs/support/SupportManual/
c02126499/c02126499.pdf.

[17] R. Bolla, R. Bruschi, and A. Ranieri, “Performance and power consump-
tion modeling for green COTS software router,” in COMSNETS 2009,
Jan. 2009, pp. 1–8.

[18] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain:
Incrementally deployable icn,” in ACM SIGCOMM, 2013, pp. 147–158.

[19] Intel Corporation, “Intel R⃝ 64 and ia-32 architectures
optimization reference manual,” Sep. 2014, available at https:
//www-ssl.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html.

[20] “The Linux kernel archives,” https://www.kernel.org.
[21] Intel Corporation, “Intel R⃝ Xeon R⃝ processor 5600/5500

series platforms for embedded computing,” available at
http://www.intel.com/content/dam/www/public/us/en/documents/
platform-briefs/xeon-5500-5600-platform-brief.pdf.

[22] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency scaling,”
in Proceedings of the ACM International Conference on Autonomic
Computing, Jun. 2011, pp. 31–40.

[23] J. Mogul, “Improving energy efficiency for networked applications,”
Keynote presentation at ACM/IEEE ANCS 2007, Dec. 2007, available at
http://www.cse.wustl.edu/ANCS/2007/slides/ANCS2007KeynoteMogul.
pdf.

[24] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, and
R. L. Braynard, “Networking named content,” in ACM CoNEXT 2009,
Dec. 2009, pp. 1–12.

[25] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix
on caching performance in a content-centric network,” in Proceedings
of IEEE NOMEN, Mar. 2012, pp. 310–315.

[26] “Ircache project,” http://www.ircache.net/.
[27] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the

performance analysis of caching systems,” in Proceedings of IEEE
INFOCOM, Apr. 2014, pp. 2040–2048.

0733-8716 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2520278, IEEE Journal
on Selected Areas in Communications

14

Kaito Ohsugi received his Bachelor and Master of
of Information Science degrees from Osaka Uni-
versity, Japan, in 2013 and 2015, respectively. He
is currently work at KDDI. His research interests
include Information Centric Networking.

Junji Takemasa received his Bachelor of Informa-
tion Science degree from Osaka University, Japan,
in 2014. He is currently a master’s course student
at the Graduate School of Information Science and
Technology, Osaka University. His research interests
include Information Centric Networking and green
networking. He is a member of IEICE, and IPSJ.

Yuki Koizumi received his Master of Information
Science and Ph.D. of Information Science degrees
from Osaka University, Japan, in 2006 and 2009,
respectively. He is currently an Assistant Professor
at the Graduate School of Information Science and
Technology, Osaka University, Japan. His research
interests include Information Centric Networking
and mobile networking. He is a member of IEEE,
ACM, and IEICE.

Toru Hasegawa is a professor of Graduate school
of Information and Science, Osaka University. He
received the B.E., the M.E. and Dr. Informatics
degrees in information engineering from Kyoto Uni-
versity, Japan, in 1982, 1984 and 2000, respectively.
After receiving the master degree, he worked as
a research engineer at KDDI R&D labs. (former
KDD R&D labs.) for 29 years and moved to Osaka
University. His current interests are future Internet,
Information Centric Networking, mobile computing
and so on. He has published over 100 papers in

peer-reviewed journals and international conference proceedings including
MobiCom, ICNP, IEEE/ACM Transactions on Networking, Computer Com-
munications. He has served on the program or organization committees of
several networking conferences such as ICNP, P2P, ICN, CloudNet, ICC,
Globecom etc, and as TPC co-chair of Testcom/Fates 2008, ICNP 2010,
P2P 2011 and Global Internet Symposium 2014. He received the Meritorious
Award on Radio of ARIB in 2003, the best tutorial paper award in 2014 from
IEICE and the best paper award in 2015 from IEICE. He is a fellow of IPSJ
and IEICE.

Ioannis Psaras is an EPSRC Fellow at the Electrical
and Electronic Engineering Department of UCL.
He is interested in resource management techniques
for current and future networking architectures with
particular focus on routing, caching and congestion
control. Before joining UCL in 2010, he held po-
sitions at the University of Surrey, and Democritus
University of Thrace, Greece, where he also obtained
his PhD in 2008. In 2004 he won the Ericsson
Award of Excellence in Telecommunications for his
diploma dissertation. He has held research intern

positions at DoCoMo Eurolabs and Ericsson Eurolabs. More details can be
found at: http://www.ee.ucl.ac.uk/∼uceeips/

