162 research outputs found

    AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants

    Get PDF
    Single nucleotide polymorphisms (SNPs) may be considered the ultimate genetic marker as they represent the finest resolution of a DNA sequence (a single nucleotide), are generally abundant in populations and have a low mutation rate. Analysis of assembled EST sequence data provides a cost-effective means to identify large numbers of SNPs associated with functional genes. We have developed an integrated SNP discovery pipeline, which identifies SNPs from assembled EST sequences. The results are maintained in a custom relational database along with EST source and annotation information. The current database hosts data for the important crops rice, barley and Brassica. Users may rapidly identify polymorphic sequences of interest through BLAST sequence comparison, keyword searches of annotations derived from UniRef90 and GenBank comparisons, GO annotations or in genes corresponding to syntenic regions of reference genomes. In addition, SNPs between specific varieties may be identified for targeted mapping and association studies. SNPs are viewed using a user-friendly graphical interface. The database is freely accessible at http://autosnpdb.qfab.org.au/

    A yeast artificial chromosome contig encompassing the type 1 neurofibromatosis gene

    Full text link
    The yeast artificial chromosome (YAC) system (Burke et al., 1987, Science 236: 806-812) allows the direct cloning of large regions of the genome. A YAC contig map of approximately 700 kb encompassing the region surrounding the type 1 neurofibromatosis (NF1) locus on 17q11.2 has been constructed. A single YAC containing the entire NF1 locus has been constructed by homologous recombination in yeast. In the process of contig construction a novel method of YAC end rescue has been developed by YAC circularization in yeast and plasmid rescue in bacteria. YACs containing homology to the NF1 region but mapping to another chromosome have also been discovered. Sequences of portions of the homologous locus indicate that this other locus is a nonprocessed pseudogene.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29972/1/0000334.pd

    Comparison of C. elegans and C. briggsae Genome Sequences Reveals Extensive Conservation of Chromosome Organization and Synteny

    Get PDF
    To determine whether the distinctive features of Caenorhabditis elegans chromosomal organization are shared with the C. briggsae genome, we constructed a single nucleotide polymorphism–based genetic map to order and orient the whole genome shotgun assembly along the six C. briggsae chromosomes. Although these species are of the same genus, their most recent common ancestor existed 80–110 million years ago, and thus they are more evolutionarily distant than, for example, human and mouse. We found that, like C. elegans chromosomes, C. briggsae chromosomes exhibit high levels of recombination on the arms along with higher repeat density, a higher fraction of intronic sequence, and a lower fraction of exonic sequence compared with chromosome centers. Despite extensive intrachromosomal rearrangements, 1:1 orthologs tend to remain in the same region of the chromosome, and colinear blocks of orthologs tend to be longer in chromosome centers compared with arms. More strikingly, the two species show an almost complete conservation of synteny, with 1:1 orthologs present on a single chromosome in one species also found on a single chromosome in the other. The conservation of both chromosomal organization and synteny between these two distantly related species suggests roles for chromosome organization in the fitness of an organism that are only poorly understood presently

    Localized Removal Affects White-Tailed Deer Space Use and Contacts

    Get PDF
    Transmission and impact of infectious diseases can be altered if host social structure is disrupted by disease outbreaks or lethal management. Specifically, if remnants of depopulated groups join or increase contact with neighboring groups, between-group transmission may increase even as population density decreases. We tested whether this phenomenon could apply to diseases of white-tailed deer (Odocoileus virginianus) by using a before-after-control-impact design. We monitored space use and contacts among adult female and juvenile deer in southern Illinois during 2011–2014; midway through each study season, we removed all members except 1 collared deer from centrally located groups and left control groups intact. After group removal, remnant adult females shortened duration of contacts with neighboring groups, whereas remnant juveniles responded with greater shifts in space use and appeared to join neighboring groups. Together, our study points to potential age-specific responses of deer to social disruption, with evidence that juveniles respond in ways that could shift disease transmission dynamics toward frequency dependence. These findings highlight the need for focused research into the importance of social disruption in disease dynamics, and lend support for complete group removal (if possible) when culling for disease management

    Characterization of pathogenic germline mutations in human Protein Kinases

    Get PDF
    Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites.<p></p> Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families.<p></p> Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.<p></p&gt

    An integrated approach to the interpretation of Single Amino Acid Polymorphisms within the framework of CATH and Gene3D

    Get PDF
    Background The phenotypic effects of sequence variations in protein-coding regions come about primarily via their effects on the resulting structures, for example by disrupting active sites or affecting structural stability. In order better to understand the mechanisms behind known mutant phenotypes, and predict the effects of novel variations, biologists need tools to gauge the impacts of DNA mutations in terms of their structural manifestation. Although many mutations occur within domains whose structure has been solved, many more occur within genes whose protein products have not been structurally characterized.<p></p> Results Here we present 3DSim (3D Structural Implication of Mutations), a database and web application facilitating the localization and visualization of single amino acid polymorphisms (SAAPs) mapped to protein structures even where the structure of the protein of interest is unknown. The server displays information on 6514 point mutations, 4865 of them known to be associated with disease. These polymorphisms are drawn from SAAPdb, which aggregates data from various sources including dbSNP and several pathogenic mutation databases. While the SAAPdb interface displays mutations on known structures, 3DSim projects mutations onto known sequence domains in Gene3D. This resource contains sequences annotated with domains predicted to belong to structural families in the CATH database. Mappings between domain sequences in Gene3D and known structures in CATH are obtained using a MUSCLE alignment. 1210 three-dimensional structures corresponding to CATH structural domains are currently included in 3DSim; these domains are distributed across 396 CATH superfamilies, and provide a comprehensive overview of the distribution of mutations in structural space.<p></p> Conclusion The server is publicly available at http://3DSim.bioinfo.cnio.es/ webcite. In addition, the database containing the mapping between SAAPdb, Gene3D and CATH is available on request and most of the functionality is available through programmatic web service access.<p></p&gt

    A second generation human haplotype map of over 3.1 million SNPs

    Full text link
    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r(2) of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r(2) of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62863/1/nature06258.pd
    corecore