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ABSTRACT Transmission and impact of infectious diseases can be altered if host social 20 

structure is disrupted by disease outbreaks or lethal management. Specifically, if remnants of 21 

depopulated groups join or increase contact with neighboring groups, between-group 22 

transmission may increase even as population density decreases. We tested whether this 23 

phenomenon could apply to diseases of white-tailed deer (Odocoileus virginianus) by using a 24 

before-after-control-impact design. We monitored space use and contacts among adult female 25 

and juvenile deer in southern Illinois during 2011–2014; midway through each study season, we 26 

removed all members except 1 collared deer from centrally located groups and left control 27 
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groups intact. After group removal, remnant adult females shortened duration of contacts with 28 

neighboring groups, whereas remnant juveniles responded with greater shifts in space use and 29 

appeared to join neighboring groups. Together, our study points to potential age-specific 30 

responses of deer to social disruption, with evidence that juveniles respond in ways that could 31 

shift disease transmission dynamics toward frequency dependence. These findings highlight the 32 

need for focused research into the importance of social disruption in disease dynamics, and lend 33 

support for complete group removal (if possible) when culling for disease management. 34 

KEY WORDS chronic wasting disease, contact rate, direct transmission, disease management, 35 

indirect transmission, infectious disease, Odocoileus virginianus, sharpshooting, social behavior. 36 

 37 

Social behavior shapes contact patterns and, as a result, disease transmission opportunities within 38 

host populations (Anderson et al. 1986, Altizer et al. 2003, Nunn et al. 2015). Although there are 39 

costs to group-living (e.g., competition for food and mates, increased parasite burdens) benefits 40 

of social behavior (e.g., anti-predator defenses, increased access to food, thermoregulation) often 41 

outweigh these costs (Krebs and Davies 1997, Krause and Ruxton 2002). The costs and benefits 42 

of social behavior, and therefore the level of sociality, differ by species, season, age, and sex 43 

because of varying physiological needs and availability of food, cover, and mates (Caraco 1979, 44 

Krause and Ruxton 2002). Social interactions can be so important to a species like the domestic 45 

goat that a radio-collared "Judas goat" can be used to seek out and eliminate all other feral goats 46 

on an island (Taylor and Katahira 1988). Such a strong social proclivity can be problematic for 47 

disease control if it increases the chances of pathogen transport into new, susceptible groups 48 

(Cross et al. 2005, Nunn et al. 2008). 49 
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Social grouping can disconnect within-group contact patterns from overall population 50 

density, so that disease transmission is often modeled as frequency-dependent with the force of 51 

infection dependent on the proportion of infected individuals in the population (de Jong et al. 52 

1995, Begon et al. 2002). In extreme cases, frequency-dependent diseases can cause hosts to 53 

become locally extinct because individuals seek each other even as the population decreases (e.g., 54 

devil facial tumor disease; McCallum et al. 2009). Unlike the case with density-dependent 55 

transmission, holding host density below a threshold may not be an effective management 56 

strategy when transmission is frequency-dependent (Getz and Pickering 1983). 57 

Density- and frequency-dependent transmission mechanisms represent somewhat 58 

unrealistic extremes of the transmission mechanism continuum (Lloyd-Smith et al. 2005, Storm 59 

et al. 2013). Such simple models of disease transmission fail to acknowledge the impact of social 60 

disruption (due to disease mortality or management interventions) on host behavior, which can 61 

be highly problematic. For example, attempts to control bovine tuberculosis (bTB) in cattle by 62 

culling European badgers (Meles meles), the wildlife reservoir, reduced bTB incidence in cattle 63 

in cull areas but increased incidence in adjoining areas (Donnelly et al. 2006). Disruptions to 64 

badger social structure increased dispersal and increased contact rates with neighboring groups 65 

(Tuyttens et al. 2000, Donnelly et al. 2006, Vicente et al. 2007). 66 

Understanding contact patterns of white-tailed deer (Odocoileus virginianus) is important 67 

to understand and predict dynamics of bTB and chronic wasting disease (CWD) in free-living 68 

deer populations (Gross and Miller 2001, Williams et al. 2002, Conner et al. 2008). White-tailed 69 

deer have an intermediate level of sociality; adult female and young deer form relatively stable 70 

social groups (typically described as matrilines) from September through June (Hawkins and 71 

Klimstra 1970, Hirth 1977, Nelson and Mech 1981, Lingle 2003), with distinct within-group and 72 
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between-group interactions (Schauber et al. 2007, 2015; Tosa et al. 2015). Specifically, direct 73 

contact rates are greater within social groups than predicted based on joint space use alone 74 

(Schauber et al. 2007, 2015). In contrast, members of different social groups avoid close contact 75 

even when in the general vicinity of each other (Tosa et al. 2015). If group membership is stable, 76 

disease transmission compartmentalized based on group membership can be modeled similar to 77 

that of species that are more solitary (e.g., moose [Alces alces]), where each deer group is 78 

analogous to an individual. If disease mortality or management efforts destabilize group 79 

membership, however, that could enhance between-group transmission independent of changes 80 

in population density. 81 

The importance of contact compartmentalization based on group membership for disease 82 

transmission is supported by evidence that having a closely related female infected with CWD 83 

nearby is a far stronger predictor of CWD infection than the number of unrelated, infected 84 

females nearby (Grear et al. 2010). Because deer infected with bTB and CWD rarely show 85 

clinical signs during early stages, targeted removal of infected deer is difficult (Williams et al. 86 

2002, Wolfe et al. 2004). Moreover, the long incubation periods of these diseases can allow 87 

infected juveniles to outlive older, earlier-infected group members, which may lead to social 88 

disruption (e.g., orphaning, temporary isolation; Gross and Miller 2001, Williams et al. 2002). 89 

Because infected animals are difficult to identify, managers have implemented non-selective 90 

sharpshooting in and around core disease areas and increased hunting opportunities for the 91 

public; these efforts appear to have maintained low disease prevalence compared to areas with no 92 

culling (Williams et al. 2002, Bollinger et al. 2004, Mateus-Pinilla et al. 2013, Manjerovic et al. 93 

2014). Still, how social disruption affects disease transmission and the remaining population is 94 

poorly understood (Wasserberg et al. 2009). 95 
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Localized removal of white-tailed deer has generated conflicting results, depending on 96 

whether entire groups were removed or remnant animals were left. After removal of entire deer 97 

social groups in the Adirondack Mountains in New York, remaining groups adjacent to the 98 

removal area did not alter their home ranges, even after 5 years (Porter et al. 1991, McNulty et al. 99 

1997, Oyer and Porter 2004). Ozoga and Verme (1984) similarly reported that isolated females 100 

remaining after localized removal stayed within their original home ranges despite being 101 

surrounded by areas of lower deer density. In other studies, orphaned juveniles had smaller home 102 

ranges than unorphaned juveniles (Woodson et al. 1980, Marchinton and Hirth 1984, Giuliano et 103 

al. 1999). Partial group removal may cause remaining deer to group together (Ozoga and Verme 104 

1984, Williams et al. 2008), where individuals initially from separate social groups attempt to 105 

form groups (Woodson et al. 1980, Etter et al. 1995, Giuliano et al. 1999, Comer et al. 2005). 106 

This behavior has also been observed in red deer (Cervus elaphus), where orphaned females 107 

more frequently joined and left groups than those whose mothers were still alive (Clutton-Brock 108 

et al. 1982). Although removal of deer may decrease density of deer in the area, partial group 109 

removal could cause greater movement of deer (and their pathogens) from group to group. 110 

Movement of deer between groups due to incomplete removal of groups by disease epidemics or 111 

management strategies can maintain efficient between-group transmission even as overall 112 

population density decreases. Furthermore, greater movement of deer or movement of deer into 113 

areas previously occupied by infected individuals that were removed can be problematic if 114 

pathogens can persist in the environment and be transmitted indirectly (Sauvage et al. 2003, 115 

Miller et al. 2004, Almberg et al. 2011). Similar to other transmissible spongiform 116 

encephalopathies, the prions that cause CWD can remain infectious for years in the environment. 117 

Chronic wasting disease can be transmitted directly and indirectly by contact with contaminated 118 



6 Tosa et al. 

 

blood, saliva, feces, carcasses, or soil (Mathiason et al. 2009, Walter et al. 2011). As such, 119 

indirect transmission can further decouple between-group transmission of disease from the 120 

density of infected animals (Almberg et al. 2011). 121 

Understanding how social structure disruption affects remnant animals is crucial to 122 

understanding disease transmission and improving disease management. Therefore, our goal was 123 

to quantify the effect of social group removal on remnant white-tailed deer behavior. Our 124 

objectives were to compare changes in direct contact rates between control and remnant deer, 125 

compare changes in indirect contact rates between control and remnant deer, and compare 126 

behavioral responses (i.e., those changes in direct and indirect contact) of remnant adult females 127 

to remnant juveniles. 128 

STUDY AREA 129 

We conducted our study at 4 sites in southern Illinois, USA (UTM zone 16N): a private property 130 

(Johnson Farms; 309572E, 4175040N), Touch of Nature Environmental Center (TON; 309169E, 131 

4166864N), Crab Orchard National Wildlife Refuge (CONWR; 311628E, 4166427N), and Rend 132 

Lake (324803E, 4215562N; Fig. 1). This study area is located on the glacial border where there 133 

is a sharp transition from rolling agricultural land in the north to rough unglaciated areas in the 134 

south; elevations range from 118 m to 199 m. The region had hot, humid summers and mild 135 

winters; monthly high temperatures ranged from 5°C in January to 32°C in July and monthly low 136 

temperatures ranged from −5°C in January to 20°C in July (National Oceanic and Atmospheric 137 

Administration 2010). Study sites were primarily oak (Quercus spp.)-hickory (Carya spp.) forest 138 

with some crop fields, grasslands, and residential areas (Schauber et al. 2007). Bobcats (Lynx 139 

rufus), coyotes (Canis latrans), and domestic dogs (Canis familiarus) are the primary predators 140 

in this region (Rohm et al. 2007). Sites had relatively high deer densities (>15 deer/km2; 141 
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Anderson et al. 2013) and low mortality rates (87% annual survival rate of adult F; Storm et al. 142 

2007). All sites were closed to hunting during this study with the exception of a deer hunt for 143 

handicapped persons at TON (archery) and Rend Lake (gun) in November. 144 

METHODS 145 

Deer Capture and Handling 146 

To characterize between-group interactions, we captured and marked adjacent social groups of 147 

adult female and juvenile white-tailed deer. To record contacts and movements, we equipped 1 148 

deer/group with a proximity logger (SirTrack, Havelock North, New Zealand) affixed to a store-149 

on-board global positioning system (GPS) collar (TGW-4500, Telonics, Mesa, AZ, USA). 150 

During the adult phase of the study (2011–2012), we focused on collaring females >1 year old. 151 

During the juvenile phase (2012–2014), we focused on collaring male and female juveniles. We 152 

programmed collars to record deer locations at 1-hour intervals during the adult phase and at 30-153 

minute intervals during the juvenile phase. We set fix timeouts to 3 minutes so that all collars 154 

achieved fixes simultaneously. Collars were equipped with a very high frequency (VHF) 155 

transmitter with a mortality signal programmed for 4 hours of inactivity. We scheduled the collar 156 

drop-off mechanisms to detach on 1 June each year (6–8 months of data collection). Proximity 157 

loggers continuously emitted and detected ultra high frequency (UHF) signals to and from other 158 

devices, respectively; they recorded identity, date, time, and duration of interactions with other 159 

devices. We programmed proximity loggers to record a new interaction if separated by >30 160 

seconds. 161 

We calibrated detection distances by placing collars in the same orientation facing each 162 

other to represent direct contact between collared deer. Detection distances differed by phase: ≤1 163 

m during the adult phase and ≤2 m during the juvenile phase (Prange et al. 2006, Walrath et al. 164 
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2011). We adjusted this distance following the adult phase because 1 m was too short (i.e., 165 

within-group contacts totaled only 58.5 per week; SE = 6.4); 2 m was still a biologically relevant 166 

distance where 2 animals could physically touch, and proximity loggers recorded contacts >1 m 167 

even if they were oriented in different directions. We captured and aged white-tailed deer 168 

(juveniles [~0.5 yr] or adults [>1.5 yr]) between October to January of 2011–2014 using methods 169 

described in Tosa et al. (2015). During capture, we anesthetized deer using intramuscular 170 

injections of Telazol® and xylazine HCl. We marked each individual using a metal ear tag and 2 171 

plastic ear tags with unique color and number combinations. Capture, handling, and removal 172 

methods were approved by the Southern Illinois University Carbondale Institutional Animal 173 

Care and Use Committee (protocol no. 11-027). 174 

Delineating Groups and Localized Removal 175 

We determined social group size and composition by visual observations from vehicles, elevated 176 

stands, and photographic records during capture and monitoring. We defined an association as 177 

animals that were ≤25 m of each other and moving in a coordinated fashion during a particular 178 

observation (Hirth 1977, Aycrigg and Porter 1997, Lingle 2003, Miller et al. 2010); we also 179 

considered behavioral cues (e.g.,  aggressive actions) when recording associations. We 180 

positioned remote cameras (Excite C2000, Cuddeback, De Pere, WI, USA) on bait piles (during 181 

trapping) and in areas of high deer activity to supplement visual observations. For remote camera 182 

photographs, we recorded marked deer (identified using color and number combinations of the 183 

ear tags) and number and sex of untagged deer. If we were unable to determine sex of untagged 184 

deer, whether the deer was marked, or the identity of the tagged deer, we recorded those deer as 185 

unsure. 186 

Because photographs of social groups are often incomplete and because multiple 187 
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photographs of the same social group were taken frequently (especially at bait piles while deer 188 

were feeding), we condensed information from photographs taken at the same location within 15 189 

minutes of each other into 1 record. We defined sampling periods as 1 day to account for uneven 190 

sampling between days. For each tagged deer, we selected the group size observed in the most 191 

sampling periods (i.e., the mode). To determine which tagged deer belonged to the same group, 192 

we calculated the percentage of total sampling periods each tagged individual was photographed 193 

together with each other tagged deer. With these values, we conducted hierarchical cluster 194 

analysis between tagged deer using the hclust function in the stats package in program R (R 195 

Development Core Team 2014), and created dendrograms to visualize the results. 196 

 During March–April, we selected for removal treatment 1–3 centrally located groups at 197 

each study site that contained collared animals and whose group composition was well-198 

documented. We determined the number of groups for the removal treatment based on the 199 

number of social groups collared at each site; generally, we selected 1 removal group for every 6 200 

social groups that were collared so that the removal group was surrounded by the control groups. 201 

We baited identified groups with corn, and targeted all their members except for 1 collared deer 202 

(hereafter referred to as the remnant) per group for simultaneous removal using centerfire rifles 203 

(Table 1). Once we removed deer, we continued to monitor remnant deer via radio-telemetry, 204 

visual observations, and trail cameras. 205 

Contact Rate Analysis 206 

To quantify the effect of social group removal on behavior of remnant deer, we used a before-207 

after-control-impact (BACI) design (Stewart-Oaten et al. 1986) to compare temporal changes in 208 

measures of indirect and direct contact between control (i.e., from non-removal groups) and 209 

remnant collared deer in each study site. We designed the study so that we would have ≥8 weeks 210 
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of data in both pre- and post-removal periods during the time when grouping behavior is 211 

strongest. We censored data from all deer ≤3 days of capture and during the period of deer 212 

removal at each site to account for altered behavior due to capture and presence of bait during 213 

removal efforts, respectively (Kjær et al. 2008, Schauber et al. 2015). Therefore, the pre-removal 214 

period started 4 days following capture for each deer and ended when the site was baited (i.e., 215 

typically the week before removal; 18 Mar 2012, 13 Mar 2013, and 10 Mar 2014). The post-216 

removal period started the day bait was no longer at the site (i.e., typically a few days following 217 

removal; 6 Apr 2012, 3 Apr 2013, and 1 Apr 2014) and lasted until the collars dropped off (i.e., 1 218 

Jun). We excluded any GPS locations with an altitude <0 m or >400 m. We conducted all data 219 

analyses in program R. We analyzed data for adult and juvenile phases separately and excluded 220 

data from collared deer that died during the data collection period. We excluded 2 incomplete 221 

removal groups (i.e., group size remained >1) from the analysis. In addition, based on high 222 

dynamic interaction index values (Long et al. 2014), we identified 4 groups that each had 2 223 

collared deer (Fig. S1, available online in Supporting Information); we excluded data from 1 224 

collar (chosen at random) from each of these within-group dyads from the analysis. Lastly, we 225 

excluded contact data between 1 dyad consisting of 2 control deer whose dynamic interaction 226 

index fluctuated between within-group and between-group levels over the study period. 227 

Indirect contact.—We compared 3 metrics of indirect contact, indicating potential for 228 

environmental transmission, between remnant and control deer: 1) changes in home range size, 229 

2) space use fidelity (i.e., overlap between pre- and post-removal space use of the same animal), 230 

and 3) shifts in space use toward neighboring deer. We calculated home range size and space use 231 

overlap using the AdehabitatHR package (Calenge 2006). For each individual in each time 232 

period (i.e., pre- or post-removal), we used 500 randomly selected GPS locations and reference 233 
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bandwidths to calculate the fixed-kernel utilization distribution (UD; Seaman and Powell 1996, 234 

Seaman et al. 1999). To compare changes (from pre- to post-removal periods) in home range 235 

(∆HR) and core area size (∆CA) between control and remnant deer, we calculated home range 236 

(95% isopleth) and core area (50% isopleth) sizes from the pre- and post-removal fixed-kernel 237 

UDs for each deer. 238 

We used volume of intersection (VI; Seidel 1992, Millspaugh et al. 2004, Fieberg and 239 

Kochanny 2005) to calculate space use overlap between 2 estimated UDs: ��� and ���. For space 240 

use fidelity (VIfidelity), ��� and ��� represent the estimated UDs of the same deer from the pre- and 241 

post-removal periods, respectively. To compare shifts in space use overlap toward neighboring 242 

deer, we calculated 2 VIs for each dyad (i,j), 1 pre-removal (VIpre, ij) and 1 post-removal (VIpost, ij), 243 

where ��� and ��� represent the estimated UDs of 2 deer during the same time period. For each 244 

possible dyad in each study area, we calculated the difference in VI between periods (∆VI ij = 245 

VIpre, ij – VIpost, ij). Then, for each deer, we selected its greatest ∆VI value (∆VImax; ∆VImax, i = 246 

∆VI i1 if ∆VI i1> ∆VI i2, ∆VI i3, … ∆VI ij) and compared ∆VImax between control and remnant deer. 247 

We excluded dyads with remnant deer when calculating ∆VImax for control deer. 248 

For each indirect contact metric, we tested for differences between control and remnant 249 

deer with a Welch's 2-sample t-test for unequal variances (α = 0.05). In the adult and juvenile 250 

phase, we predicted that ∆HR and ∆CA would be greater, VIfidelity would be smaller, and ∆VI max 251 

would be greater for remnant deer than for control deer (Table 2). 252 

Direct contact.—To test whether group removal affected direct contact patterns, we 253 

conducted a BACI analysis of variance (ANOVA) of contact rates and of duration of contacts 254 

recorded by proximity loggers, where we included treatment (i.e., control or remnant) and period 255 

(i.e., pre- or post-removal) as factors and deer and site as random effects in a mixed-effect 256 
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ANOVA using the nlme package (Pinheiro et al. 2012). We calculated direct contact rates 257 

(proximity logger records/week) among all possible dyads within the same site, beginning the 258 

week immediately following deployment of the last GPS collar at each site (11 Dec 2011 at 259 

Johnson, 8 Jan 2012 and 13 Jan 2013 at TON, 22 Dec 2013 at CONWR, and 19 Jan 2014 at 260 

Rend Lake). We combined proximity logger records between the same dyad that were <30 261 

seconds apart into 1 consolidated record (Walrath et al. 2011). Although previous studies have 262 

censored 1-second contacts (Prange et al. 2006, 2011), we kept these interactions because short-263 

duration contacts may still allow for disease transmission (Walrath et al. 2011). 264 

For each individual deer, we calculated contact rate as mean number of contacts per dyad 265 

recorded per week (only including dyads that recorded ≥1 contact during the study period). We 266 

also calculated the mean duration of contacts made by each deer with all other collared deer 267 

(averaged over contact records). We excluded contacts with remnant deer when calculating 268 

contact rates and durations for control deer. We predicted a treatment×period interaction (i.e., 269 

BACI effect) such that contact rates and contact durations between groups would increase more 270 

(or decrease less) for remnant deer following removal of their social group than for control deer 271 

(Table 2). In addition, we assessed statistical support for the post hoc hypothesis that remnant 272 

juveniles increased their contact rate temporarily following the removal of their social group 273 

members by repeating the BACI analysis only using contact rate data 3 weeks pre- and post-274 

removal event.  275 

Regrouping.—Our metrics of indirect and direct contact are based on data only from deer 276 

carrying GPS-proximity logger collars, but remnant deer might attempt to join or form groups 277 

with un-collared deer. Therefore, we assessed evidence of grouping by remnant animals by 278 

examining the frequency of observation (visual or via remote cameras) alone versus with other 279 
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deer post-removal. Specifically, we used a 2-sample t-test to test the post-hoc hypothesis that the 280 

proportion of post-removal observations of remnant animals alone was greater for adult than for 281 

juvenile remnants. 282 

RESULTS 283 

We captured and tagged 105 deer (46 in adult phase: 30 adults, 16 juveniles, 59 in juvenile 284 

phase: 21 adults, 38 juveniles), and we collared 20 females (16 adults, 4 juveniles) during the 285 

adult phase and 14 females (6 adults, 8 juveniles) and 8 juvenile males during the juvenile phase 286 

(Table 3). From 587 visual observations and 40,807 trail camera photographs, we identified 63 287 

social groups (27 in 2011–2012, 18 in 2012–2013, and 18 in 2013–2014), consisting of 1–5 288 

group members. Of these groups, we collared 42 social groups (20 in 2011–2012, 7 in 2012–289 

2013, and 15 in 2013–2014). Of these, we were able to remove all but the collared animal 290 

successfully from 8 social groups, 4 in each phase (Table 1). We compared their responses with 291 

those of 34 collared animals in unmanipulated (i.e., control) groups (16 in adult phase, 18 in 292 

juvenile phase; Table 2). Overall mean GPS error was 5.78 m (SE = 0.01, n = 292,278); GPS 293 

error for each deer ranged from 5.40–6.26 m. 294 

Indirect Contact 295 

Control and remnant deer exhibited similar decreases in core area and home range sizes from 296 

pre- to post-removal periods in both the adult phase (∆CA t5.1 = −1.06, 1-tailed P = 0.17; ∆HR 297 

t4.8 = −1.30, 1-tailed P = 0.13) and the juvenile phase (∆CA t3.5 = 0.30, 1-tailed P = 0.39; ∆HR 298 

t3.7 = −0.12, 1-tailed P = 0.46; Table 2, Fig. 2A). We found no evidence that group removal 299 

affected space use fidelity of remnant adults (remnant VI��	
���	����������� = 0.63, SE = 0.03, n = 4, vs. 300 

control	VI��	
���	����������� = 0.62, SE = 0.02, n = 16; t6.19 = −0.32, 1-tailed P = 0.38), but remnant 301 
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juveniles had lower space use fidelity than control deer (remnant ����� = 0.48, SE = 0.05, n = 4 vs. 302 

control ����� = 0.67, SE = 0.02, n = 18; t4.14 = 3.40, 1-tailed P = 0.013; Fig. 2B).  303 

Similarly, we found no evidence that group removal caused remnant adults to shift space use 304 

toward neighboring groups (remnant ∆��������������� = 0.04, SE = 0.03, n = 4 vs. control ∆��������������� = 0.04, 305 

SE = 0.01, n = 16; t4.30 = 0.05, 1-tailed P = 0.48). Observed space-use shift by remnant juveniles 306 

toward neighbors after group removal was nearly 4 times greater than observed for controls, but 307 

this difference was not statistically significant (remnant ∆��������������� = 0.15, SE = 0.06, n = 4 vs. 308 

control ∆��������������� = 0.04, SE = 0.01, n = 18; t3.32 = −1.79, 1-tailed P = 0.08; Fig. 2C). We found no 309 

evidence that apparent responses by remnant juveniles were caused by a difference in sex: 310 

comparisons between remnant males and control males during the juvenile phase (remnant 311 

	VI��	
���	����������� = 0.50, SE = 0.07, n = 3 vs. control 	VI��	
���	����������� = 0.68, SE = 0.02, n = 5; t2.47 = 2.53, 1-312 

tailed P = 0.05; remnant ∆���������������� = 0.19, SE = 0.06, n = 3 vs. control ∆���������������� = 0.08, SE = 0.03, 313 

n = 5; t3.14 = −1.59, 1-tailed P = 0.10; Fig. S2) were quantitatively and qualitatively similar to 314 

results obtained from juveniles of both sexes. 315 

Direct Contact 316 

Proximity loggers recorded 29,499 consolidated contacts (25,734 within-group, 3,765 between-317 

group; Fig. 3). Only 37 of the between-group contacts were recorded during the adult phase. We 318 

did not find main or interactive BACI effects of treatment (remnant vs. control) and period (pre- 319 

vs. post-removal) on direct contact rates of adult females (F1,404 ≤ 2.33, P ≥ 0.13; Table 2, Fig. 320 

4A). Similarly, the BACI effect (treatment × period interaction) on direct contact rates during the 321 

juvenile phase was not statistically significant (F1,423 = 0.64, P = 0.43). Remnant juveniles had 322 

similar overall contact rates to control deer (F1,423 = 2.53, P = 0.11), and contact rates of both 323 
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control deer and remnant juveniles were higher before than after the removal event (F1,423 = 324 

15.18, P ≤ 0.001; Fig. 4B). 325 

 For duration of contact during the adult phase, we found a significant BACI effect (i.e., 326 

treatment×period interaction; F1,404 = 5.49, P = 0.02), but the effect was opposite of our 327 

prediction; duration of contact was greater for remnant than control adults before the removal 328 

event, whereas contact durations for remnant and control adults were similar after the removal 329 

event (Fig. 4C). During the juvenile phase, neither the main nor interactive (BACI) effects of 330 

treatment and period on duration of contacts were statistically significant (F1,423 ≤ 0.51, P ≥ 0.48; 331 

Figs. 4D and S3). 332 

Regrouping 333 

Post-removal, adult remnant deer were nearly always observed alone (Fig. 5). In contrast, 3 of 4 334 

juvenile remnants were observed more often with other deer than alone and the 1 other juvenile 335 

remnant was observed alone only about half the time (Fig. 5). A post hoc test of this difference 336 

between age classes in mean frequency of being observed alone indicated statistical significance 337 

(�̅ = 89.9%, SE = 7.1, n = 4 for adults vs. �̅ = 39.8%, SE = 5.5, n = 4 for juveniles; t5.67 = 5.59, P 338 

= 0.002). 339 

DISCUSSION 340 

Following general sharpshooting where individuals rather than groups were removed, Williams 341 

et al. (2008) reported that remaining white-tailed deer increased their home range overlap, and 342 

suspected that remnant deer had an inherent need to join new social groups of unrelated 343 

individuals. In our study, experimental group removal caused shorter contacts and little change 344 

in contact rates or space use of remnant adult females. In contrast, remnant juveniles reduced 345 

their space use fidelity and appeared to increase spatial overlap with neighbors following group 346 
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removal. Visual observations with uncollared deer further suggested that juvenile deer may have 347 

sought out interactions with neighbors following removal of group members. Similar to this 348 

study, Williams et al. (2008) conducted their study in an area with high deer densities (i.e., 78–349 

83 deer/km2), little to no hunting pressure, and little predation pressure. Williams et al. (2008), 350 

however, collared both male and female deer and did not distinguish between adults and 351 

juveniles in their analysis. What is more, Williams et al. (2008) conducted their removal efforts 352 

in January and did not account for social groups during removal; this may have resulted in partial 353 

group removal or even left some collared groups intact. Our findings suggest that responses by 354 

deer to social disruption differ by age, due in part to greater familiarity of adult females with 355 

their surroundings and their more established social status with their neighbors relative to 356 

juveniles (Hirth 1977, Nelson and Mech 1981, Taillon et al. 2006). Juveniles may also lose 357 

social status with neighboring groups when group members are removed if social status is 358 

derived from the group, similar to the manner in which calves derive social status from females 359 

in red deer (Hall 1983). Whereas adult females may have previously reared and parted with their 360 

offspring because of dispersal, predation, hunting mortality, or disease, juveniles have 361 

experienced group member loss for the first time. For these reasons, juveniles may benefit more 362 

from being social than adult females and may seek out opportunities to join other groups or 363 

establish themselves, thereby increasing their contact rates with neighbors (Woodson et al. 1980, 364 

Marchinton and Hirth 1984, Giuliano et al. 1999). 365 

An increase in direct and indirect contact rates with other social groups by remnants 366 

following group removal would facilitate pathogen spread and  provide a potential mechanism 367 

for frequency-dependent transmission, confounding attempts at disease management (Potapov et 368 

al. 2012). We found no evidence that loss of group members drives adult females to increase 369 
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opportunities for direct or indirect contact with neighboring groups; rather, our findings indicate 370 

that remnant adult females will remain in their home ranges, shorten duration of contacts, and 371 

stay isolated until the fawning season and thereby limit spread of disease to neighboring groups. 372 

Remnant juveniles, however, showed lower home range fidelity than controls and were observed 373 

more often with other deer than were remnant adults. The effect of removal on space use shifts of 374 

juveniles was not statistically significant, despite large observed effect sizes. Thus, our results on 375 

how juveniles respond to group removal were inconclusive (i.e., consistent with small as well as 376 

biologically significant effect sizes; Steidl et al. 1997). For diseases with long incubation times, 377 

such as bTB and CWD, adult females typically have higher infection prevalence than juveniles 378 

and continue to contaminate the environment by shedding pathogens (Delahay et al. 2000, 379 

Conner et al. 2008). The potential of juveniles to spread pathogens between groups, however, 380 

could be more problematic because younger infected animals are likely to outlive older infected 381 

animals during epizootics (Conner et al. 2008). Further research into social prospects of remnant 382 

juvenile deer would enhance our understanding of disease transmission and management in 383 

group-living wildlife. 384 

Among juveniles, we found that direct contact rates were higher before than after 385 

removal. As winter progresses to spring, growth of vegetation increases cover in addition to 386 

forage quantity and quality for deer (Beier and McCullough 1990). Because large feeding groups 387 

are common during late winter and early spring (Hawkins and Klimstra 1970) and because direct 388 

contacts appear to occur mainly during feeding (Kjær et al. 2008), this increase in vegetation 389 

may decrease deer densities at each foraging location and thereby decrease opportunities for 390 

direct contact. We expected that remnant juveniles would have higher direct contact rates overall 391 

than control juveniles because we specifically chose removal groups located in the center of the 392 
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study sites, surrounded by other collared animals, and most control animals were located on the 393 

periphery with fewer collared groups around them. The lack of statistical difference between 394 

overall contact rates between control and remnant deer suggests that a number of control groups 395 

were also surrounded by other collared deer. 396 

There are obvious limitations to this study. Our sample size is small, with only 4 removal 397 

groups in each phase, so we had statistical power to detect only large changes in behavior. We 398 

were only able to capture and collar a limited number of deer at each site, leaving some groups 399 

without collared or tagged members. Inevitably, we were unable to measure potential indirect or 400 

direct contacts with those unmarked groups. These data, nevertheless, allowed us to describe and 401 

compare changes in remnant deer behavior because remnant deer were in centrally located areas 402 

surrounded by collared deer. Another limitation is that our measurements of direct contact rates 403 

are not directly comparable between adult and juvenile phases because we increased the 404 

detection distance of the proximity loggers during the juvenile phase to increase the sample size 405 

of between-group proximity logger contacts. Still, the scarcity of direct contacts recorded during 406 

the adult phase (only 37 contacts among 126 possible dyads) may explain why we did not find a 407 

difference in direct contact rates between remnant and control deer. Although broad patterns of 408 

behavior among the deer we studied likely differed among years, the BACI design measures 409 

average behavioral differences between remnants to control animals from the pre- to post-410 

removal period. Therefore, any changes caused by year should be reflected by both remnants and 411 

controls, and thereby offset one another. 412 

Our findings are limited to populations of female and juvenile deer with little or no 413 

hunting pressure during winter and spring, outside of breeding and fawning seasons. Areas with 414 

strong hunting or predation pressure or severe winter weather may have different grouping 415 
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responses to removal because protection from predators and access to resources are important 416 

influences for grouping behavior (Krause and Ruxton 2002). We did not measure contact rates of 417 

adult male deer or differentiate between behavior of remnant juveniles that were male or female. 418 

Contact rates of adult male deer are especially important for disease transmission during the 419 

mating season when males provide additional pathways for pathogens to spread to other female 420 

social groups (Geist 1981, Koutnik 1981, Miller and Conner 2005), and male and female 421 

juveniles may respond differently to disturbances in social structure (Nixon et al. 2007). 422 

Although sex could account for behavioral differences in remnant juveniles, our analyses using 423 

only male juveniles produced results similar to those for the full dataset (Fig. S2). Obviously, 424 

there are variations in behavior by individual (Fig. S4). However, the female remnant juvenile 425 

(deer 2206) was most active in contacting other groups before group removal and 1 male 426 

remnant juvenile (deer 0516) was most active in contacting other groups following group 427 

removal (Fig. S4D). We specifically chose to monitor deer during winter and spring because 428 

white-tailed deer matrilines exhibit the greatest social interaction during these seasons (Hawkins 429 

and Klimstra 1970), when between-group transmission is most likely. Moreover, our study does 430 

not measure the transmission of pathogens. Rather, our study measures the potential for pathogen 431 

transmission using various metrics; transmission of pathogens depends heavily on the disease in 432 

question. Diseased individuals may have different social behavior (Krumm et al. 2005, Webster 433 

2007). For instance, Salazar et al. (2016) reported that mule deer (Odocoileus hemionus) with 434 

clinical CWD were less likely to be observed in groups with other deer than were apparently 435 

healthy individuals. In spite of these limitations, our findings elucidate the behavioral differences 436 

between remnant juveniles and adults in response to social group removal and can be used to 437 

strengthen our understanding of social behavior and disease dynamics of white-tailed deer. 438 
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MANAGEMENT IMPLICATIONS 439 

Because remnant juveniles tended to shift their space use and were observed more often with 440 

other deer than were remnant adults after group removal, our findings suggest that disease 441 

management should aim to remove entire social groups of deer instead of separate individuals, if 442 

feasible (Porter et al. 1991, McNulty et al. 1997, Oyer and Porter 2004). If removing whole 443 

social groups is not logistically possible, culling individuals may still have desired effects on 444 

disease control (Potapov et al. 2012, Mateus-Pinilla et al. 2013, Manjerovic et al. 2014), but 445 

further research is needed. 446 
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Fig. 1.  Study area where we captured, marked, and collared white-tailed deer during 2011–2014 670 

in southern Illinois, USA to investigate space use and contacts after deer removal. 671 

Fig. 2.  Indirect contact metrics for collared control (white) and remnant (gray) white-tailed deer 672 

during 2011–2014 in southern Illinois, USA. Changes in indirect contact following the removal 673 

period were quantified by change in home range and core area size (A), space use fidelity 674 

measured by volume of intersection (B), and shift in space use toward neighbors measured by 675 

greatest change in volume of intersection (C). Error bars represent standard error. 676 

Fig. 3.  Mean direct contact rates (no. contacts/dyad/week) between white-tailed deer measured 677 

by proximity loggers during 2011–2014 in southern Illinois, USA, relative to time of group 678 

removal for control (black) and remnant (gray) white-tailed deer during the adult phase (A) and 679 

the juvenile phase (B). Error bars represent standard error. 680 

Fig. 4.  Direct contact metrics of white-tailed deer before and after the removal period during 681 

2011–2014 in southern Illinois, USA. We present mean direct contact rates (no. 682 

contacts/dyad/week; A and B) and mean duration of direct contact (seconds; C and D) of control 683 

(black) and remnant (gray) deer during adult (A and C) and juvenile (B and D) phase. Error bars 684 

represent standard error. 685 

Fig. 5.  Histogram of white-tailed deer group size observations before and after the removal 686 

period during 2011–2014 in southern Illinois, USA. Each panel represents a remnant individual 687 

(identification of individual on top right): remnant adults (left) and remnant juveniles (right). 688 

  689 
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Table 1.  Collared white-tailed deer in treatment groups in southern Illinois, USA, 2011–2014. 690 
We removed all group members, except the one listed as remnant, during March–April in 2012–691 
2014. We determined group sizes using visual observations and trail camera photographs. 692 
 693 

Phase 
Remnant 

deer ID 
Site Age Sex 

Group size 

pre-

removal 

No. deer 

removed 

Date 

removed 

Group size 

post-

removal 

Adult 0115 TONa Adult F 2 1 27 Mar 2012 1 

Adult 0410 Johnson Adult F 3 2 30 Mar 2012 1 

Adult 0511 TONa Adult F 3 2 6 Apr 2012 1 

Adult 0811 TONa Adult F 2 1 2 May 2012 1 

Juvenile 0516 Rend Lake Juvenile M 3 2 18 Mar 2014 4 

Juvenile 2206 CONWRb Juvenile F 2 1 29 Mar 2014 4 

Juvenile 2308 TONa Juvenile M 3 2 1 Apr 2013 2 

Juvenile 2404 Rend Lake Juvenile M 2 1 18 Mar 2014 2 

Total 8     12   

aTouch of Nature Environmental Center. 694 
bCrab Orchard National Wildlife Refuge.695 
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Table 2.  Hypotheses and results of statistical tests used to evaluate responses of remnant white-tailed deer to group member removal 696 
in southern Illinois, USA, 2011–2014. Indirect contact metrics were change in core area (∆CA), change in home range (∆HR), space 697 
use fidelity measured by volume of intersection (VIfidelity), and maximum space use shift toward neighbors (∆VImax). Direct contact 698 
metrics were contact rate (no. contacts/dyad/week) and duration of contacts (seconds). 699 
 700 
  Adult phase  Juvenile phase 

 Metric Prediction Observed  Prediction Observed 

Indirect 
contact 

∆CA Remnant > Control Remnant > Control  Remnant > Control Remnant < Control 

∆HR Remnant > Control Remnant > Control  Remnant > Control Remnant > Control 

VI fidelity Remnant < Control Remnant > Control  Remnant < Control Remnant < Control** 

∆VImax Remnant > Control Remnant < Control  Remnant > Control Remnant > Control* 

Direct 
contact 

Rate Negative BACI effect Positive BACI effect  Negative BACI effect Negative BACI effect 

Duration Negative BACI effect Positive BACI effect**  Negative BACI effect Positive BACI effect 

** One-tailed P < 0.05. 701 
* One-tailed P = 0.08.702 
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Table 3.  Demographic characteristics of white-tailed deer collared and monitored for experimental tests of behavioral response to 
social group disruption in southern Illinois, USA, 2011–2014. We determined group sizes using visual observations and trail camera 
photographs. 
 

   Control  Removal 

   M F F Group  M F F Initial group 

Year Phase Site Juvenile Juvenile Adult sizes  Juvenile Juvenile Adult sizes 

2011–2012 Adult Johnson 0 1 3 1–3  0 0 1 3 

2011–2012 Adult TONa 0 3 9 1–5  0 0 3 2–3 

2012–2013 Juvenile TONa 1 1 4 1–8  1 0 0 3 

2013–2014 Juvenile CONWRb 0 3 2 1–4  0 1 0 2 

2013–2014 Juvenile Rend Lake 4 3 0 1–8  2 0 0 2–3 

aTouch of Nature Environmental Center. 
bCrab Orchard National Wildlife Refuge. 



35 Tosa et al. 

 

Article Summary: Transmission and impact of infectious diseases can be altered if host 

social structure is disrupted. By testing whether remnant white-tailed deer join or increase 

contacts with neighboring groups after group depopulation, we found age-specific responses to 

social disruption and support for complete group removal when culling for disease management. 
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