26 research outputs found

    Developing a Chinese Herb-based Art Therapy Method for Older Adults in Community Settings

    Get PDF
    Physiological aging can lead to frustration and hinder the willingness of the elders to learn new things. Therefore, when considering how art therapy can bring better care and benefits to older Chinese immigrants, the author combined Chinese herbs in art making. Studies have shown that using different media based on cultural considerations in art therapy can better meet the needs of diverse groups. In this thesis, the author designed art therapy sessions corresponding to plant growth and human development stages with the concept of traditional Chinese medicine philosophy to explore the potential value of this method. Through these sessions, the older Chinese adult participants became gradually engaged in the group as they were familiar with the materials used, allowing them to share their thoughts on cultural aspects more freely. Additionally, the use of Chinese herbs as metaphors during the art-making process had a similar effect, expanding and deepening participants\u27 self-care reflections. These findings support the notion that combining art therapy and traditional Chinese medicine philosophy can provide positive outcomes to participants

    Improvement of Carbon Nanofibers/ZrO2 Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol–Gel Method

    Full text link
    The development of new carbon nanofibers (CNFs)–ceramic nanocomposite materials with excellent mechanical, thermal, and electrical properties is interesting for a wide range of industrial applications. Among the ceramic materials, zirconia stands out for their excellent mechanical properties. The main limitations in the preparation of this kind of nanocomposites are related with the difficulty in obtaining materials with homogeneous distribution of both phases and the dissimilar properties of CNFs and ZrO2 which causes poor interaction between them. CNFs-reinforced zirconia nanocomposites ZrO2/xCNFs (x=1–20 vol%) were prepared by powder mixture and sintered by spark plasma sintering (SPS). ZrO2-reinforced CNFs nanocomposites CNFs/xZrO2 (x=20 vol%) were prepared by powder mixture and a surface coating of CNFs by the wet chemical route with zirconia precursor is proposed as a very effective way to improve the interaction between CNFs and ZrO2. After SPS sintering, an improvement of 50% in fracture strength was found for similar nanocomposite compositions when the surface coating was used. The improved mechanical properties of these nanocomposites are caused by stronger interaction between the CNFs and ZrO2.This work was financially supported by National Plan Projects MAT2006-01783 and MAT2007-30989-E and the Regional Project FICYT PC07-021. A. Borrell, acknowledges the Spanish Ministry of Science and Innovation for her research grant BES2007-15033.Borrell TomĂĄs, MA.; Rocha, VG.; Torrecillas, R.; Fernandez, A. (2011). Improvement of Carbon Nanofibers/ZrO2 Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol–Gel Method. Journal of the American Ceramic Society. 94(7):2048-2052. https://doi.org/10.1111/j.1551-2916.2010.04354.xS20482052947Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. doi:10.1038/354056a0Merkoçi, A. (2005). Carbon Nanotubes in Analytical Sciences. Microchimica Acta, 152(3-4), 157-174. doi:10.1007/s00604-005-0439-zUchida, T., Anderson, D. P., Minus, M. L., & Kumar, S. (2006). Morphology and modulus of vapor grown carbon nano fibers. Journal of Materials Science, 41(18), 5851-5856. doi:10.1007/s10853-006-0324-0HvizdoĆĄ, P., PuchĂœ, V., DuszovĂĄ, A., & Dusza, J. (2010). Tribological behavior of carbon nanofiber–zirconia composite. Scripta Materialia, 63(2), 254-257. doi:10.1016/j.scriptamat.2010.03.069BalĂĄzsi, C., KĂłnya, Z., WĂ©ber, F., BirĂł, L. P., & AratĂł, P. (2003). Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Materials Science and Engineering: C, 23(6-8), 1133-1137. doi:10.1016/j.msec.2003.09.085Tatami, J., Katashima, T., Komeya, K., Meguro, T., & Wakihara, T. (2005). Electrically Conductive CNT-Dispersed Silicon Nitride Ceramics. Journal of the American Ceramic Society, 88(10), 2889-2893. doi:10.1111/j.1551-2916.2005.00539.xHirota, K., Hara, H., & Kato, M. (2007). Mechanical properties of simultaneously synthesized and consolidated carbon nanofiber (CNF)-dispersed SiC composites by pulsed electric-current pressure sintering. Materials Science and Engineering: A, 458(1-2), 216-225. doi:10.1016/j.msea.2006.12.065Dusza, J., Blugan, G., Morgiel, J., Kuebler, J., Inam, F., Peijs, T., 
 Puchy, V. (2009). Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites. Journal of the European Ceramic Society, 29(15), 3177-3184. doi:10.1016/j.jeurceramsoc.2009.05.030Lee, S.-Y., Kim, H., McIntyre, P. C., Saraswat, K. C., & Byun, J.-S. (2003). Atomic layer deposition of ZrO2 on W for metal–insulator–metal capacitor application. Applied Physics Letters, 82(17), 2874-2876. doi:10.1063/1.1569985Kobayashi, S., & Kawai, W. (2007). Development of carbon nanofiber reinforced hydroxyapatite with enhanced mechanical properties. Composites Part A: Applied Science and Manufacturing, 38(1), 114-123. doi:10.1016/j.compositesa.2006.01.006Sun, J., Gao, L., Iwasa, M., Nakayama, T., & Niihara, K. (2005). Failure investigation of carbon nanotube/3Y-TZP nanocomposites. Ceramics International, 31(8), 1131-1134. doi:10.1016/j.ceramint.2004.11.010Ukai, T., Sekino, T., Hirvonen, A. T., Tanaka, N., Kusunose, T., Nakayama, T., & Niihara, K. (2006). Preparation and Electrical Properties of Carbon Nanotubes Dispersed Zirconia Nanocomposites. Key Engineering Materials, 317-318, 661-664. doi:10.4028/www.scientific.net/kem.317-318.661DuszovĂĄ, A., Dusza, J., TomĂĄĆĄek, K., Morgiel, J., Blugan, G., & Kuebler, J. (2008). Zirconia/carbon nanofiber composite. Scripta Materialia, 58(6), 520-523. doi:10.1016/j.scriptamat.2007.11.002Wang, X., Padture, N. P., & Tanaka, H. (2004). Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nature Materials, 3(8), 539-544. doi:10.1038/nmat1161Zhan, G.-D., Kuntz, J. D., Garay, J. E., & Mukherjee, A. K. (2003). Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Applied Physics Letters, 83(6), 1228-1230. doi:10.1063/1.1600511Yucheng, W., & Zhengyi, F. (2002). Study of temperature field in spark plasma sintering. Materials Science and Engineering: B, 90(1-2), 34-37. doi:10.1016/s0921-5107(01)00780-2Haase, F., & Sauer, J. (1998). The Surface Structure of Sulfated Zirconia:  Periodic ab Initio Study of Sulfuric Acid Adsorbed on ZrO2(101) and ZrO2(001). Journal of the American Chemical Society, 120(51), 13503-13512. doi:10.1021/ja9825534Matsui, K., Suzuki, H., Ohgai, M., & Arashi, H. (1995). Raman Spectroscopic Studies on the Formation Mechanism of Hydrous-Zirconia Fine Particles. Journal of the American Ceramic Society, 78(1), 146-152. doi:10.1111/j.1151-2916.1995.tb08374.xGateshki, M., Petkov, V., Williams, G., Pradhan, S. K., & Ren, Y. (2005). Atomic-scale structure of nanocrystallineZrO2prepared by high-energy ball milling. Physical Review B, 71(22). doi:10.1103/physrevb.71.224107Pyda, W., Haberko, K., & Bulko, M. M. (1991). Hydrothermal Crystallization of Zirconia and Zirconia Solid Solutions. Journal of the American Ceramic Society, 74(10), 2622-2629. doi:10.1111/j.1151-2916.1991.tb06810.xDell’Agli, G., & Mascolo, G. (2000). Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature. Journal of the European Ceramic Society, 20(2), 139-145. doi:10.1016/s0955-2219(99)00151-xTai, C. Y., Hsiao, B.-Y., & Chiu, H.-Y. (2007). Preparation of silazane grafted yttria-stabilized zirconia nanocrystals via water/CTAB/hexanol reverse microemulsion. Materials Letters, 61(3), 834-836. doi:10.1016/j.matlet.2006.05.068Tai, C. Y., Lee, M.-H., & Wu, Y.-C. (2001). Control of zirconia particle size by using two-emulsion precipitation technique. Chemical Engineering Science, 56(7), 2389-2398. doi:10.1016/s0009-2509(00)00454-1Tai, C. Y., & Hsiao, B.-Y. (2005). CHARACTERIZATION OF ZIRCONIA POWDER SYNTHESIZED VIA REVERSE MICROEMULSION PRECIPITATION. Chemical Engineering Communications, 192(11), 1525-1540. doi:10.1080/009864490896133Ci, L., Wei, J., Wei, B., Liang, J., Xu, C., & Wu, D. (2001). Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon, 39(3), 329-335. doi:10.1016/s0008-6223(00)00126-3Choi, S. R., & Bansal, N. P. (s. f.). Alumina-Reinforced Zirconia Composites. Handbook of Ceramic Composites, 437-457. doi:10.1007/0-387-23986-3_18Li, W., & Gao, L. (2000). Rapid sintering of nanocrystalline ZrO2(3Y) by spark plasma sintering. Journal of the European Ceramic Society, 20(14-15), 2441-2445. doi:10.1016/s0955-2219(00)00152-7Borrell, A., FernĂĄndez, A., Merino, C., & Torrecillas, R. (2010). High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers. International Journal of Materials Research, 101(1), 112-116. doi:10.3139/146.110246Dusza, J., Morgiel, J., Tatarko, P., & Puchy, V. (2009). Characterization of interfaces in ZrO2–carbon nanofiber composite. Scripta Materialia, 61(3), 253-256. doi:10.1016/j.scriptamat.2009.03.052Lauwers, B., Kruth, J. P., Liu, W., Eeraerts, W., Schacht, B., & Bleys, P. (2004). Investigation of material removal mechanisms in EDM of composite ceramic materials. Journal of Materials Processing Technology, 149(1-3), 347-352. doi:10.1016/j.jmatprotec.2004.02.01

    "Twisted'' scorpionates: synthesis of a tris(2-pyridonyl)borate (Thp) ligand; lessons in the requirements for successful B(L2D)(3) type ligands

    Get PDF
    The synthesis of a new charge-neutral zwitterionic tripodal borate ligand based on 2-hydroxypyridine is reported. (Dimethylaminopyridinium)tris(2-pyridonyl)borate, (DMAP)Thp, has been complexed to copper(I) chloride to give a pseudo-C3 symmetric complex. The propensity for this ligand and other flexible scorpionates to exhibit such helical chirality upon complexation is discussed

    mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes

    Get PDF
    mGenomeSubtractor performs an mpiBLAST-based comparison of reference bacterial genomes against multiple user-selected genomes for investigation of strain variable accessory regions. With parallel computing architecture, mGenomeSubtractor is able to run rapid BLAST searches of the segmented reference genome against multiple subject genomes at the DNA or amino acid level within a minute. In addition to comparison of protein coding sequences, the highly flexible sliding window-based genome fragmentation approach offered can be used to identify short unique sequences within or between genes. mGenomeSubtractor provides powerful schematic outputs for exploration of identified core and accessory regions, including searches against databases of mobile genetic elements, virulence factors or bacterial essential genes, examination of G+C content and binucleotide distribution bias, and integrated primer design tools. mGenomeSubtractor also allows for the ready definition of species-specific gene pools based on available genomes. Pan-genomic arrays can be easily developed using the efficient oligonucleotide design tool. This simple high-throughput in silico ‘subtractive hybridization’ analytical tool will support the rapidly escalating number of comparative bacterial genomics studies aimed at defining genomic biomarkers of evolutionary lineage, phenotype, pathotype, environmental adaptation and/or disease-association of diverse bacterial species. mGenomeSubtractor is freely available to all users without any login requirement at: http://bioinfo-mml.sjtu.edu.cn/mGS/

    TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea

    Get PDF
    TADB (http://bioinfo-mml.sjtu.edu.cn/TADB/) is an integrated database that provides comprehensive information about Type 2 toxin–antitoxin (TA) loci, genetic features that are richly distributed throughout bacterial and archaeal genomes. Two-gene and much less frequently three-gene Type 2 TA loci code for cognate partners that have been hypothesized or demonstrated to play key roles in stress response, bacterial physiology and stabilization of horizontally acquired genetic elements. TADB offers a unique compilation of both predicted and experimentally supported Type 2 TA loci-relevant data and currently contains 10 753 Type 2 TA gene pairs identified within 1240 prokaryotic genomes, and details of over 240 directly relevant scientific publications. A broad range of similarity search, sequence alignment, genome context browser and phylogenetic tools are readily accessible via TADB. We propose that TADB will facilitate efficient, multi-disciplinary and innovative exploration of the bacteria and archaea Type 2 TA space, better defining presently recognized TA-related phenomena and potentially even leading to yet-to-be envisaged frontiers. The TADB database, envisaged as a one-stop shop for Type 2 TA-related research, will be maintained, updated and improved regularly to ensure its ongoing maximum utility to the research community

    A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure

    Get PDF
    Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P <5 x 10(-8), false discovery rate <0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.Peer reviewe

    A multi-display system for deploying and controlling home automation

    Get PDF

    The <i>dnd</i> island in the <i>Salmonella enterica</i> serovar Saintpaul SARA23 genome that is currently being sequenced.

    No full text
    <p>(A) The top axis corresponds to the <i>dnd</i> island-bearing contig (NCBI Refseq accession no. NZ_ABAM01000005), while the lower axis represents a magnified view of the region shown in the red box. The symbol ‘k’ in the coordinates denotes kilobase pairs. (B) A schematic view of the lower axis (above) illustrating the location of the 19.7-kb <i>dnd</i> island (orange line), the <i>leuX</i> tRNA gene integration site (red arrow head), and the upstream/downstream flanking regions (black lines) that are conserved across 14 completely sequenced <i>Salmonella enterica</i> genomes. The ‘5end’ and ‘3end’ backbone labels refer to the 5â€Č- and 3â€Č-flanking backbone segments in relation to the orientation of the <i>leuX</i> tRNA gene, respectively. (C) SynView-facilated synteny mapping of the <i>dnd</i> islands and immediate flanking sequences from three species: <i>Salmonella enterica</i> serovar Saintpaul SARA23 (19.7-kb island) [topmost], <i>Escherichia coli</i> B7A (17.9-kb tRNA-proximal end of island) [middle] and <i>Enterobacter</i> sp. 638 (16.9-kb island) [lower most]. The <i>dnd</i> genes are highlighted in blue, while these and other island-harboured genes are marked by orange frames. Individual genes are hyperlinked to related information that can be accessed using GBrowse. Light-blue-shaded trapezoids link orthologous genes between the three species.</p
    corecore