2,509 research outputs found

    Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO₂ Reduction in Aqueous Electrolytes

    Get PDF
    We report the light-induced modification of catalytic selectivity for photoelectrochemical CO₂ reduction in aqueous media using copper (Cu) nanoparticles dispersed onto p-type nickel oxide (p-NiO) photocathodes. Optical excitation of Cu nanoparticles generates hot electrons available for driving CO₂ reduction on the Cu surface, while charge separation is accomplished by hot-hole injection from the Cu nanoparticles into the underlying p-NiO support. Photoelectrochemical studies demonstrate that optical excitation of plasmonic Cu/p-NiO photocathodes imparts increased selectivity for CO₂ reduction over hydrogen evolution in aqueous electrolytes. Specifically, we observed that plasmon-driven CO₂ reduction increased the production of carbon monoxide and formate, while simultaneously reducing the evolution of hydrogen. Our results demonstrate an optical route toward steering the selectivity of artificial photosynthetic systems with plasmon-driven photocathodes for photoelectrochemical CO₂ reduction in aqueous media

    Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition

    Get PDF
    Dust deposition of iron is thought to be an important control on ocean biogeochemistry and air-sea CO<sub>2</sub> exchange. In this study, we examine the impact of a large scale, yet climatically realistic, reduction in the aeolian Fe input during a 240 year transient simulation. In contrast to previous studies, we find that the ocean biogeochemical cycles of carbon and nitrogen are relatively insensitive (globally) to a 60% reduction in Fe input from dust. Net primary productivity (NPP) is reduced in the Fe limited regions, but the excess macronutrients that result are able to fuel additional NPP elsewhere. Overall, NPP and air-sea CO<sub>2</sub> exchange are only reduced by around 3% between 1860 and 2100. While the nitrogen cycle is perturbed more significantly (by ~15%), reduced N<sub>2</sub> fixation is balanced by a concomitant decline in denitrification. Feedbacks between N<sub>2</sub> fixation and denitrification are controlled by variability in surface utilization of inorganic nitrogen and subsurface oxygen consumption, as well as the direct influence of Fe on N<sub>2</sub> fixation. Overall, there is relatively little impact of reduced aeolian Fe input (<4%) on cumulative CO<sub>2</sub> fluxes over 240 years. The lower sensitivity of our model to changes in dust input is primarily due to the more detailed representation of the continental shelf Fe, which was absent in previous models

    Impact of hydrothermalism on the ocean iron cycle

    Get PDF
    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon

    High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures

    Get PDF
    We report experimental measurements for ultrathin (< 15 nm) van der Waals heterostructures exhibiting external quantum efficiencies exceeding 50%, and show that these structures can achieve experimental absorbance > 90%. By coupling electromagnetic simulations and experimental measurements, we show that pn WSe2/MoS2 heterojunctions with vertical carrier collection can have internal photocarrier collection efficiencies exceeding 70%.Comment: ACS Nano, 2017. Manuscript (25 pages, 7 figures) plus supporting information (7 pages, 4 figures

    A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity

    Get PDF
    We previously identified the lpa1 (low phytic acid) 280-10 line that carries a mutation conferring a 90% reduction in phytic acid (InsP6) content. In contrast to other lpa mutants, lpa1(280-10) does not display negative pleiotropic effects. In the present paper, we have identified the mutated gene and analysed its impact on the phytic acid pathway. Here, we mapped the lpa1(280-10) mutation by bulk analysis on a segregating F2 population, an then, by comparison with the soybean genome, we identified and sequenced a candidate gene. The InsP6 pathway was analysed by gene expression and quantification of metabolites. The mutated Pvmrp1(280-10) cosegregates with the lpa1(280-10) mutation, and the expression level of several genes of the InsP6 pathway are reduced in the lpa1(280-10) mutant as well as the inositol and raffinosaccharide content. PvMrp2, a very similar paralogue of PvMrp1 was also mapped and sequenced. The lpa1 mutation in beans is likely the result of a defective Mrp1 gene (orthologous to the lpa genes AtMRP5 and ZmMRP4), while its Mrp2 paralog is not able to complement the mutant phenotype in the seed. This mutation appears to down-regulate the InsP6 pathway at the transcriptional level, as well as altering inositol-related metabolism and affecting ABA sensitivity

    Neoadjuvant therapy for breast cancer

    Get PDF
    Objective: To evaluate the frequency of neoadjuvant therapy (NT) in women with stage I–III breast cancer in Italy and whether it is influenced by biological characteristics, screening history, and geographic area. Methods: Data from the High Resolution Study conducted in 7 Italian cancer registries were used; they are a representative sample of incident cancers in the study period (2009–2013). Included were 3546 women aged &lt;85 years (groups &lt;50, 50–69, 70–64, and 75+) with stage I–III breast cancer at diagnosis who underwent surgery. Women were classified as receiving NT if they received chemotherapy, target therapy, and/or hormone therapy before the first surgical treatment. Logistic models were built to test the association with biological and contextual variables. Results: Only 8.2% of women (290 cases) underwent NT; the treatment decreases with increasing age (14.5% in age &lt;50 and 2.2% in age 75+), is more frequent in women with negative receptors (14.8%), HER2-positive (15.7%), and triple-negative (15.6%). The multivariable analysis showed the probability of receiving NT is higher in stage III (odds ratio [OR] 3.83; 95% confidence interval [CI] 2.83–5.18), luminal B (OR 1.87; 95% CI 1.27–2.76), triple-negatives (OR 1.88; 95% CI 1.15–3.08), and in symptomatic cancers (OR 1.98; 95% CI 1.13–3.48). Use of NT varied among geographic areas: Reggio Emilia had the highest rates (OR 2.29; 95% CI 1.37–3.82) while Palermo had the lowest (OR 0.41; 95% CI 0.24–0.68). Conclusions: The use of NT in Italy is limited and variable. There are no signs of greater use in hospitals with more advanced care

    Differences between kinematic synergies and muscle synergies during two-digit grasping

    Get PDF
    International audienceThe large number of mechanical degrees of freedom of the hand is not fully exploited during actual movements such as grasping. Usually, angular movements in various joints tend to be coupled, and EMG activities in different hand muscles tend to be correlated. The occurrence of covariation in the former was termed kinematic synergies, in the latter muscle synergies. This study addresses two questions: (i) Whether kinematic and muscle synergies can simultaneously accommodate for kinematic and kinetic constraints. (ii) If so, whether there is an interrelation between kinematic and muscle synergies. We used a reach-grasp-and-pull paradigm and recorded the hand kinematics as well as eight surface EMGs. Subjects had to either perform a precision grip or side grip and had to modify their grip force in order to displace an object against a low or high load. The analysis was subdivided into three epochs: reach, grasp-and-pull, and static hold. Principal component analysis (PCA, temporal or static) was performed separately for all three epochs, in the kinematic and in the EMG domain. PCA revealed that (i) Kinematic-and muscle-synergies can simultaneously accommodate kinematic (grip type) and kinetic task constraints (load condition). (ii) Upcoming grip and load conditions of the grasp are represented in kinematic-and muscle-synergies already during reach. Phase plane plots of the principal muscle-synergy against the principal kinematic synergy revealed (iii) that the muscle-synergy is linked (correlated, and in phase advance) to the kinematic synergy during reach and during grasp-and-pull. Furthermore (iv), pair-wise correlations of EMGs during hold suggest that muscle-synergies are (in part) implemented by coactivation of muscles through common input. Together, these results suggest that kinematic synergies have (at least in part) their origin not just in muscular activation, but in synergistic muscle activation. In short: kinematic synergies may result from muscle synergies

    Intentional weight loss in overweight and obese individuals and cognitive function: a systematic review and meta-analysis.

    Get PDF
    High adiposity in middle age is associated with higher dementia risk. The association between weight loss and cognitive function in older adults is still controversial. A meta-analysis was undertaken to estimate the effectiveness of intentional weight loss on cognitive function in overweight and obese adults. A structured strategy was used to search randomized and non-randomized studies reporting the effect of intentional and significant weight loss on cognitive function in overweight and obese subjects. Information on study design, age, nutritional status, weight-loss strategy, weight lost and cognitive testing was extracted. A random-effect meta-analysis was conducted to obtain summary effect estimates for memory and attention-executive domains. Twelve studies met inclusion criteria. Seven were randomized trials and the remaining five included a control group. A low-order significant effect was found for an improvement in cognitive performance with weight loss in memory (effect size 0.13, 95% CI 0.00-0.26, P=0.04) and attention/executive functioning (effect size 0.14, 95% CI 0.01-0.27, P<0.001). Studies were heterogeneous in study design, sample selection, weight-loss intervention and assessment of cognitive function. Weight loss appears to be associated with low-order improvements in executive/attention functioning and memory in obese but not in overweight individual
    corecore