80 research outputs found

    A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

    夏期の北部北太平洋とベーリング海における動植物プランクトン現存量及びさけ・ます類と他の浮魚類の豊度の緯度別変化

    Get PDF
    1992年と1993年の6月中旬~7月上旬に西経179度30分線上の北緯38度30分~58度30分において, 動植物プランクトン現存量及びさけ・ます類と他の浮魚類の豊度の緯度別分布を調べた. さけ・ます類が多く分布したベーリング海(北緯52度~58度30分)では, 動物プランクトン量が少なかったが植物プランクトン量は多かった. しかし, さけ・ます類が少なかった移行領域(北緯42/43度~46度)では, 動物プランクトン量は多かったが植物プランクトン量は少なかった. 亜寒帯水域(北緯46度~52度)ではさけ・ます類の豊度が年によって異なり, さけ・ます類が多かった年には動物プランクトン量は少なく, 植物プランクトン量は多かった. 逆にさけ・ます類が少なかった年には, 動物プランクトン量が多く, 植物プランクトン量は少なかった. これらの結果は, さけ・ます類の摂餌が動物プランクトン量を低くする結果, 植物プランクトン量の増加を招くことを示唆する. 実際, さけ・ます類が少なかった水域では, 大型植物プランクトン(10μm以上)が少なく, カイアシ類が多かった. これは, さけ・ます類によるカイアシ類への捕食圧が減少した結果, カイアシ類による植物プランクトンの摂食が高まったことに原因すると考えられた. さらに, 移行領域の動物プランクトン量は, さけ・ます類に加えて, 南の亜熱帯水域から回遊してくるプランクトン食性魚類(サンマ)の摂餌によってもコントロールされていると推察された.Latitudinal changes in abundance of phytoplankton, macrozooplankton, salmonids (Oncorhynchus spp.) and other epipelagic fishes were surveyed from mid-June to early July in 1992 and 1993 along a transect at 179° 30'W from 38° 30'N-58° 30'N. In the Bering Sea (52° 00'N-58° 30'N) where salmonids were abundant, macrozooplankton biomass was low whereas phytoplankton abundance was high. In the Transition Domain (42° 00/43° 00'N-46° 00'N) with low salmonid abundance, macrozooplankton biomass was high but phytoplankton stock was at a low level. Salmonid abundance annually varied in the subarctic North Pacific, and when salmonids were abundant there, macrozooplankton biomass was low but phytoplankton stock was high, and vice versa. These results imply that salmonid predation may have resulted in the low abundance of macrozooplankton, which may have enhanced the phytoplankton stock. In the regions with low salmonid abundance, the proportion of large-sized phytoplankton (>10μm) was low but that of copepods was high, possibly because reduced predation pressure of salmonids may have enhanced the copepod grazing on largesized phytoplankton. The catch of pink salmon (O. gorbuscha) was high in 1993 and this species seems to play an important role in reducing the macrozooplankton biomass in central North Pacific in summer. Since the macrozooplankton biomass in the Transition Domain is controlled by the feeding of planktivorous fishes (e.g., Pacific saury Cololabis saira) migrating from the more southerly subtropical North Pacific (38° 30'N-42° 00'/43° 00'N), these fishes appear to give stronger negative effects, than salmonids, on the abundance of macrozooplankton in the Transition Domain where salmonid abundance is low
    corecore