35 research outputs found
Recommended from our members
Efficacy against pneumococcal carriage and the immunogenicity of reduced-dose (0 + 1 and 1 + 1) PCV10 and PCV13 schedules in Ho Chi Minh City, Viet Nam: a parallel, single-blind, randomised controlled trial
Background
Interest in reduced-dose pneumococcal conjugate vaccine (PCV) schedules is growing, but data on their ability to provide direct and indirect protection are scarce. We evaluated 1 + 1 (at 2 months and 12 months) and 0 + 1 (at 12 months) schedules of PCV10 or PCV13 in a predominately unvaccinated population.
Methods
In this parallel, single-blind, randomised controlled trial, healthy infants aged 2 months were recruited from birth records in three districts in Ho Chi Minh City, Vietnam, and assigned (4:4:4:4:9) to one of five groups: PCV10 at 12 months of age (0 + 1 PCV10), PCV13 at 12 months of age (0 + 1 PCV13), PCV10 at 2 months and 12 months of age (1 + 1 PCV10), PCV13 at 2 months and 12 months of age (1 + 1 PCV13), and unvaccinated control. Outcome assessors were masked to group allocation, and the infants' caregivers and those administering vaccines were not. Nasopharyngeal swabs collected at 6 months, 12 months, 18 months, and 24 months were analysed for pneumococcal carriage. Blood samples collected from a subset of participants (200 per group) at various timepoints were analysed by ELISA and opsonophagocytic assay. The primary outcome was the efficacy of each schedule against vaccine-type carriage at 24 months, analysed by intention to treat for all those with a nasopharyngeal swab available. This trial is registered at ClinicalTrials.gov, NCT03098628.
Findings
2501 infants were enrolled between March 8, 2017, and July 24, 2018 and randomly assigned to study groups (400 to 0 + 1 PCV10, 400 to 0 + 1 PCV13, 402 to 1 + 1 PCV10, 401 to 1 + 1 PCV13, and 898 to control). Analysis of the primary endpoint included 341 participants for 0 + 1 PCV10, 356 0 + 1 PCV13, 358 1 + 1 PCV10, 350 1 + 1 PCV13, and 758 control. At 24 months, a 1 + 1 PCV10 schedule reduced PCV10-type carriage by 58% (95% CI 25 to 77), a 1 + 1 PCV13 schedule reduced PCV13-type carriage by 65% (42 to 79), a 0 + 1 PCV10 schedule reduced PCV10-type carriage by 53% (17 to 73), and a 0 + 1 PCV13 schedule non-significantly reduced PCV13-type carriage by 25% (–7 to 48) compared with the unvaccinated control group. Reactogenicity and serious adverse events were similar across groups.
Interpretation
A 1 + 1 PCV schedule greatly reduces vaccine-type carriage and is likely to generate substantial herd protection and provide some degree of individual protection during the first year of life. Such a schedule is suitable for mature PCV programmes or for introduction in conjunction with a comprehensive catch-up campaign, and potentially could be most effective given as a mixed regimen (PCV10 then PCV13). A 0 + 1 PCV schedule has some effect on carriage along with a reasonable immune response and could be considered for use in humanitarian crises or remote settings.
Funding
Bill & Melinda Gates Foundation.
Translation
For the Vietnamese translation of the abstract see Supplementary Materials section
Recommended from our members
Impact of COVID-19 Nonpharmaceutical Interventions on Pneumococcal Carriage Prevalence and Density in Vietnam.
Nonpharmaceutical interventions (NPIs) implemented to contain SARS-CoV-2 have decreased invasive pneumococcal disease. Previous studies have proposed the decline is due to reduced pneumococcal transmission or suppression of respiratory viruses, but the mechanism remains unclear. We undertook a secondary analysis of data collected from a clinical trial to evaluate the impact of NPIs on pneumococcal carriage and density, drivers of transmission and disease, during the COVID-19 pandemic in Ho Chi Minh City, Vietnam. Nasopharyngeal samples from children aged 24 months were assessed in three periods - one pre-COVID-19 period (n = 1,537) and two periods where NPIs were implemented with increasing stringency (NPI period 1 [NPI-1, n = 307], and NPI period 2 [NPI-2, n = 262]). Pneumococci were quantified using lytA quantitative PCR and serotyped by DNA microarray. Overall, capsular, and nonencapsulated pneumococcal carriage and density were assessed in each NPI period compared with the pre-COVID-19 period using unadjusted log-binomial and linear regression. Pneumococcal carriage was generally stable after the implementation of NPIs. In contrast, overall pneumococcal carriage density decreased by 0.44 log10 genome equivalents/mL (95% confidence interval [CI]: 0.19 to 0.69) in NPI-1 and by 0.84 log10 genome equivalents/mL (95% CI: 0.55 to 1.13) in NPI-2 compared with the pre-COVID-19 period. Reductions in overall pneumococcal density were driven by reductions in capsular pneumococci, with no corresponding reduction in nonencapsulated density. As higher pneumococcal density is a risk factor for disease, the decline in density provides a plausible explanation for the reductions in invasive pneumococcal disease that have been observed in many countries in the absence of a substantive reduction in pneumococcal carriage. IMPORTANCE The pneumococcus is a major cause of mortality globally. Implementation of NPIs during the COVID-19 pandemic led to reductions in invasive pneumococcal disease in many countries. However, no studies have conducted a fully quantitative assessment on the impact of NPIs on pneumococcal carriage density, which could explain this reduction. We evaluated the impact of COVID-19 NPIs on pneumococcal carriage prevalence and density in 2,106 children aged 24 months in Vietnam and found pneumococcal carriage density decreased up to 91.5% after NPI introduction compared with the pre-COVID-19 period, which was mainly attributed to capsular pneumococci. Only a minor effect on carriage prevalence was observed. As respiratory viruses are known to increase pneumococcal carriage density, transmission, and disease, this work suggests that interventions targeting respiratory viruses may have the added benefit of reducing invasive pneumococcal disease and explain the reductions observed following NPI implementation
Recommended from our members
Effect of a 2+1 schedule of ten-valent versus 13-valent pneumococcal conjugate vaccine on pneumococcal carriage: Results from a randomised controlled trial in Vietnam.
BACKGROUND: Pneumococcal conjugate vaccines (PCVs) generate herd protection by reducing nasopharyngeal (NP) carriage. Two PCVs, PCV10 and PCV13, have been in use for over a decade, yet there are few data comparing their impact on carriage. Here we report their effect on carriage in a 2+1 schedule, compared with each other and with unvaccinated controls. METHODS: Data from four groups within a parallel, open-label randomised controlled trial in Ho Chi Minh City contribute to this article. Three groups were randomised to receive a 2+1 schedule of PCV10 (n = 250), a 2+1 schedule of PCV13 (n = 251), or two doses of PCV10 at 18 and 24 months (controls, n = 197). An additional group (n = 199) was recruited at 18 months to serve as controls from 18 to 24 months. NP swabs collected at 2, 6, 9, 12, 18, and 24 months were analysed (blinded) for pneumococcal carriage. This study aimed to determine if PCV10 and PCV13 have a differential effect on pneumococcal carriage, a secondary outcome of the trial. We also describe the serotype distribution among unvaccinated participants. TRIAL REGISTRATION: ClinicalTrials.gov NCT01953510. FINDINGS: Compared with unvaccinated controls, a 2+1 schedule of PCV10 reduced PCV10-type carriage by 45-62% from pre-booster through to 24 months of age, and a 2+1 schedule of PCV13 reduced PCV13-type carriage by 36-49% at 12 and 18 months of age. Compared directly with each other, there were few differences between the vaccines in their impact on carriage. Vaccine serotypes accounted for the majority of carriage in unvaccinated participants. INTERPRETATION: Both PCV10 and PCV13 reduce the carriage of pneumococcal vaccine serotypes. The introduction of either vaccine would have the potential to generate significant herd protection in this population. FUNDING: National Health and Medical Research Council of Australia, Bill & Melinda Gates Foundation
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
IMMUNOGENICITY AND IMPACT ON NASOPHARYNGEAL CARRIAGE OF A SINGLE DOSE OF PCV10 GIVEN TO VIETNAMESE CHILDREN AT 18 MONTHS OF AGE.
Background: This study investigated the immunogenicity and impact on nasopharyngeal carriage of a single dose of PCV10 given to 18-month-old Vietnamese children. This information is important for countries considering catch-up vaccination during PCV introduction and in the context of vaccination during humanitarian crises. Methods: Two groups of PCV-naïve children within the Vietnam Pneumococcal Project received PCV10 (n=197) or no PCV (unvaccinated; n=199) at 18 months of age. Blood samples were collected at 18, 19, and 24 months of age, and nasopharyngeal swabs at 18 and 24 months of age. Immunogenicity was assessed by measuring serotype-specific IgG, opsonophagocytosis (OPA) and memory B cells (Bmem). Pneumococci were detected and quantified using real-time PCR and serotyped by microarray. Findings: At 19 months of age, IgG and OPA responses were higher in the PCV10 group compared with the unvaccinated group for all PCV10 serotypes and cross-reactive serotypes 6A and 19A. This was sustained out to 24 months of age, at which point PCV10-type carriage was 60% lower in the PCV10 group than the unvaccinated group. Bmem levels increased between 18 and 24 months of age in the vaccinated group. Interpretation: We demonstrate strong protective immune responses in vaccinees following a single dose of PCV10 at 18 months of age, and a potential impact on herd protection through a substantial reduction in vaccine-type carriage. A single dose of PCV10 in the second year of life could be considered as part of catch-up campaigns or in humanitarian crises to protect children at high-risk of pneumococcal disease
A convenient chemical-microbial method for developing fluorinated pharmaceuticals
A significant proportion of pharmaceuticals are fluorinated and selecting the site of fluorine incorporation can be an important beneficial part a drug development process. Here we describe initial experiments aimed at the development of a general method of selecting optimum sites on pro-drug molecules for fluorination, so that metabolic stability may be improved. Several model biphenyl derivatives were transformed by the fungus Cunninghamella elegans and the bacterium Streptomyces griseus, both of which contain cytochromes P450 that mimic oxidation processes in vivo, so that the site of oxidation could be determined. Subsequently, fluorinated biphenyl derivatives were synthesised using appropriate Suzuki–Miyaura coupling reactions, positioning the fluorine atom at the pre-determined site of microbial oxidation; the fluorinated biphenyl derivatives were incubated with the microorganisms and the degree of oxidation assessed. Biphenyl-4-carboxylic acid was transformed completely to 4′-hydroxybiphenyl-4-carboxylic acid by C. elegans but, in contrast, the 4′-fluoro-analogue remained untransformed exemplifying the microbial oxidation – chemical fluorination concept. 2′-Fluoro- and 3′-fluoro-biphenyl-4-carboxylic acid were also transformed, but more slowly than the non-fluorinated biphenyl carboxylic acid derivative. Thus, it is possible to design compounds in an iterative fashion with a longer metabolic half-life by identifying the sites that are most easily oxidised by in vitro methods and subsequent fluorination without recourse to extensive animal studies
Recommended from our members
Effect of different schedules of ten-valent pneumococcal conjugate vaccine on pneumococcal carriage in Vietnamese infants: results from a randomised controlled trial.
BACKGROUND: WHO recommends a three-dose infant pneumococcal conjugate vaccine (PCV) schedule administered as a two-dose primary series with booster (2 + 1) or a three-dose primary series (3 + 0). Data on carriage impacts of these and further reduced PCV schedules are needed to inform PCV strategies. Here we evaluate the efficacy against carriage of four different PCV10 schedules. METHODS: Participants within an open-label, randomised controlled trial in Ho Chi Minh City, Vietnam, were allocated to receive PCV10 in a 3 + 1 (2,3,4,9 months, n = 152), 3 + 0 (2,3,4 months, n = 149), 2 + 1 (2,4,9.5 months, n = 250) or novel two-dose (2,6 months, n = 202) schedule, or no infant doses of PCV (two control groups, n = 197 and n = 199). Nasopharyngeal swabs collected between 2 and 24 months were analysed (blinded) for pneumococcal carriage and serotypes. Trial registration: ClinicalTrials.gov NCT01953510. FINDINGS: Pneumococcal carriage prevalence was low (10.6-14.1% for vaccine-type (VT) at 12-24 months in unvaccinated controls). All four PCV10 schedules reduced VT carriage compared with controls (the 2 + 1 schedule at 12, 18, and 24 months; the 3 + 1 and two-dose schedules at 18 months; and the 3 + 0 schedule at 24 months), with maximum reductions of 40.1%-64.5%. There were no differences in VT carriage prevalence at 6 or 9 months comparing three-dose and two-dose primary series, and no differences at 12, 18, or 24 months when comparing schedules with and without a booster dose. INTERPRETATION: In Vietnamese children with a relatively low pneumococcal carriage prevalence, 3 + 1, 2 + 1, 3 + 0 and two-dose PCV10 schedules were effective in reducing VT carriage. There were no discernible differences in the effect on carriage of the WHO-recommended 2 + 1 and 3 + 0 schedules during the first two years of life. Together with the previously reported immunogenicity data, this trial suggests that a range of PCV schedules are likely to generate significant direct and indirect protection. FUNDING: NHMRC, BMGF