253 research outputs found
Assessing the impact of interfering organic matter on soil metaproteomic workflow
Funding: Matthias Waibel was funded by the University of Galway College of Science and the Irish Research Council under GOIPG/2016/1215. The James Hutton Institute receives funding support from the Rural and Environment Science and Analytical Services Division of the Scottish Government. Open access funding provided by IReL.Soil organic matter (SOM) is biologically, chemically, and physically complex. As a major store of nutrients within soil, it plays an important role in nutrient provision to plants. An enhanced understanding of SOM utilisation processes could underpin better fertiliser management for plant growth, with reduced environmental losses. Metaproteomics can allow the characterisation of protein profiles and could help gaining insights into SOM microbial decomposition mechanisms. Here, we applied three different extraction methods to two soil types to recover SOM with different characteristics. Specifically, water extractable organic matter, mineral associated organic matter and protein-bound organic matter were targeted with the aim to investigate the metaproteome enriched in those extractions. As a proof-of-concept replicated extracts from one soil were further analysed for peptide identification using liquid chromatography followed by tandem mass spectrometry. We employ a framework for mining mass spectra for both peptide assignment and fragmentation pattern characterisation. Different extracts were found to exhibit contrasting total protein and humic substance content for the two soils investigated. Overall, water extracts displayed the lowest humic substance content (in both soils) and the highest number of peptide identifications (in the soil investigated) with most frequent peptide hits associated with diverse substrate/ligand binding proteins of Proteobacteria and derived taxa. Our framework also highlighted a strong peptidic signal in unassigned and unmatched spectra, information that is currently not captured by the pipelines employed in this study. Taken together, this work points to specific areas for optimisation in chromatography and mass spectrometry to adequately characterise SOM associated metaproteomes.Publisher PDFPeer reviewe
State-of-the-art of design and operation of power systems with large amounts of wind power, summary of IEA Wind collaboration
An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The task âDesign and Operation of Power Systems with Large Amounts of Wind Powerâ is analysing existing case studies from different power systems.There are a multitude of studies made and ongoing related to cost of wind integration. However, the results are not easy to compare. This paper summarises the results from 15 case studies
Orchestration of renewable generation in low energy buildings and districts using energy storage and load shaping
There is increasing penetration of renewable generation in buildings and districts. There are challenges in making the effective use of this generation. The objective of the ORIGIN project (Orchestration of Renewable Integrated Generation In Neighborhoods) is to shape loads so that the fraction of energy consumed that is from local renewable generation is maximized, and energy imported from outside sources is minimized. This paper presents the overall approach taken in the ORIGIN project and explores building physics aspects of solar thermal storage system orchestration. The case study districts are briefly introduced and characteristics of their generation, buildings, districts and shiftable loads described. The orchestration approach taken in ORIGIN is then presented. At the core of the ORIGIN system is the orchestration algorithm which generates informational and control outputs to shape future loads to best meet the objectives. The model based approach used to quantify thermal and electrical load shifting opportunities for pre-charging, coasting or avoiding loads, while meeting thermal comfort and other demands, is described using a solar thermal storage system as an example. The future steps for the ORIGIN project; retrofit of the ORIGIN system into existing districts and potential for other future applications is briefly discussed
Photometric Observations of Three High Mass X-Ray Binaries and a Search for Variations Induced by Orbital Motion
We searched for long period variation in V-band, Ic-band and RXTE X-ray light
curves of the High Mass X-ray Binaries (HMXBs) LS 1698 / RX J1037.5-5647, HD
110432 / 1H 1249-637 and HD 161103 / RX J1744.7-2713 in an attempt to discover
orbitally induced variation. Data were obtained primarily from the ASAS
database and were supplemented by shorter term observations made with the 24-
and 40-inch ANU telescopes and one of the robotic PROMPT telescopes. Fourier
periodograms suggested the existence of long period variation in the V-band
light curves of all three HMXBs, however folding the data at those periods did
not reveal convincing periodic variation. At this point we cannot rule out the
existence of long term V-band variation for these three sources and hints of
longer term variation may be seen in the higher precision PROMPT data. Long
term V-band observations, on the order of several years, taken at a frequency
of at least once per week and with a precision of 0.01 mag, therefore still
have a chance of revealing long term variation in these three HMXBs.Comment: Accepted, RAA, May, 201
Isolated neutron stars and studies of their interiors
In these lectures presented at Baikal summer school on physics of elementary
particles and astrophysics 2011, I present a wide view of neutron star
astrophysics with special attention paid to young isolated compact objects and
studies of the properties of neutron star interiors using astronomical methods.Comment: 28 pages, lecture notes for the Baikal-2011 summer school on physics
of elementary particles and astrophysic
The metabolomic-gut-clinical axis of Mankai plant-derived dietary polyphenols
24openInternationalBothBackground: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa âMankaiâ, a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. Methods: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. Results: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. Conclusions: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axisopenYaskolka Meir, A.; Tuohy, K.; von Bergen, M.; Krajmalnik-Brown, R.; Heinig, U.; Zelicha, H.; Tsaban, G.; Rinott. E.; Kaplan, A.; Aharoni, A.; Zeibich, L.; Chang, D.; Dirks, B.; Diotallevi, C.; Arapitsas, P.; Vrhovsek, U.; Ceglarek, U.; Haange, S.; Rolle-Kampczyk, U.; Engelmann, B.; Lapidot, M.; Colt, M.; Sun, Q.; Shai, I.Yaskolka Meir, A.; Tuohy, K.; von Bergen, M.; Krajmalnik-Brown, R.; Heinig, U.; Zelicha, H.; Tsaban, G.; Rinot, T.E.; Kaplan, A.; Aharoni, A.; Zeibich, L.; Chang, D.; Dirks, B.; Diotallevi, C.; Arapitsas, P.; Vrhovsek, U.; Ceglarek, U.; Haange, S.; Rolle-Kampczyk, U.; Engelmann, B.; Lapidot, M.; Colt, M.; Sun, Q.; Shai, I
Six Years of Chandra Observations of Supernova Remnants
We present a review of the first six years of Chandra X-ray Observatory
observations of supernova remnants. From the official "first-light" observation
of Cassiopeia A that revealed for the first time the compact remnant of the
explosion, to the recent million-second spectrally-resolved observation that
revealed new details of the stellar composition and dynamics of the original
explosion, Chandra observations have provided new insights into the supernova
phenomenon. We present an admittedly biased overview of six years of these
observations, highlighting new discoveries made possible by Chandra's unique
capabilities.Comment: 82 pages, 28 figures, for the book Astrophysics Update
The Relation Between the Surface Brightness and the Diameter for Galactic Supernova Remnants
In this work, we have constructed a relation between the surface brightness
() and diameter (D) of Galactic C- and S-type supernova remnants
(SNRs). In order to calibrate the -D dependence, we have carefully
examined some intrinsic (e.g. explosion energy) and extrinsic (e.g. density of
the ambient medium) properties of the remnants and, taking into account also
the distance values given in the literature, we have adopted distances for some
of the SNRs which have relatively more reliable distance values. These
calibrator SNRs are all C- and S-type SNRs, i.e. F-type SNRs (and S-type SNR
Cas A which has an exceptionally high surface brightness) are excluded. The
Sigma-D relation has 2 slopes with a turning point at D=36.5 pc: (at 1
GHz)=8.4 D
WmHzster (for
WmHzster and D36.5 pc) and (at 1
GHz)=2.7 10 D
WmHzster (for
WmHzster and D36.5 pc). We discussed the theoretical
basis for the -D dependence and particularly the reasons for the change
in slope of the relation were stated. Added to this, we have shown the
dependence between the radio luminosity and the diameter which seems to have a
slope close to zero up to about D=36.5 pc. We have also adopted distance and
diameter values for all of the observed Galactic SNRs by examining all the
available distance values presented in the literature together with the
distances found from our -D relation.Comment: 45 pages, 2 figures, accepted for publication in Astronomical and
Astrophysical Transaction
Passive experimental autoimmune encephalomyelitis in C57BL/6 with MOG: evidence of involvement of B cells
Experimental autoimmune encephalomyelitis (EAE) is the most relevant animal model to study demyelinating diseases such as multiple sclerosis. EAE can be induced by active (active EAE) or passive (at-EAE) transfer of activated T cells in several species and strains of rodents. However, histological features of at-EAE model in C57BL/6 are poorly described. The aim of this study was to characterize the neuroinflammatory and neurodegenerative responses of at-EAE in C57BL/6 mice by histological techniques and compare them with that observed in the active EAE model. To develop the at-EAE, splenocytes from active EAE female mice were harvested and cultured in presence of MOG 35-55 and IL-12, and then injected intraperitoneally in recipient female C57BL6/J mice. In both models, the development of EAE was similar except for starting before the onset of symptoms and presenting a higher EAE cumulative score in the at-EAE model. Spinal cord histological examination revealed an increased glial activation as well as more extensive demyelinating areas in the at-EAE than in the active EAE model. Although inflammatory infiltrates composed by macrophages and T lymphocytes were found in the spinal cord and brain of both models, B lymphocytes were significantly increased in the at-EAE model. The co-localization of these B cells with IgG and their predominant distribution in areas of demyelination would suggest that IgG-secreting B cells are involved in the neurodegenerative processes associated with at-EAE
The Ross Sea Dipole-temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years
High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE
- âŠ