65 research outputs found
Fruit load modulates flowering-related gene expression in buds of alternate-bearing 'Moncada' mandarin
Background and Aims Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering.
Methods First defruiting experiments were performed to manipulate blossoming intensity in `Moncada¿ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages.
Key Results Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage.
Conclusions These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to occur, their absence strongly affects the activity of floral promoters and identity genes.This work was supported by a grant from the Instituto Nacional Investigaciones Agrarias, Spain (RTA2009-00147). M. C. Gonzalez was the recipient of a contract by the Fundacion Agroalimed (Conselleria d'Agricultura, Pesca i Alimentacio, Generalitat Valenciana).Muñoz Fambuena, N.; Mesejo Conejos, C.; Gonzalez Más, MC.; Primo-Millo, E.; Agustà FonfrÃa, M.; Iglesias, DJ. (2012). Fruit load modulates flowering-related gene expression in buds of alternate-bearing 'Moncada' mandarin. Annals of Botany. 110(6):1109-1118. doi:10.1093/aob/mcs190S110911181106Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983Bustin, S. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 23-39. doi:10.1677/jme.0.0290023Corbesier, L., & Coupland, G. (2006). The quest for florigen: a review of recent progress. Journal of Experimental Botany, 57(13), 3395-3403. doi:10.1093/jxb/erl095Dornelas, M. C., Camargo, R. L. B., Figueiredo, L. H. M., & Takita, M. A. (2007). A genetic framework for flowering-time pathways in Citrus spp. Genetics and Molecular Biology, 30(3 suppl), 769-779. doi:10.1590/s1415-47572007000500006Endo, T., Shimada, T., Fujii, H., Kobayashi, Y., Araki, T., & Omura, M. (2005). Ectopic Expression of an FT Homolog from Citrus Confers an Early Flowering Phenotype on Trifoliate Orange (Poncirus trifoliata L. Raf.). Transgenic Research, 14(5), 703-712. doi:10.1007/s11248-005-6632-3Esumi, T., Hagihara, C., Kitamura, Y., Yamane, H., & Tao, R. (2009). Identification of anFTortholog in Japanese apricot (Prunus mumeSieb. et Zucc.). The Journal of Horticultural Science and Biotechnology, 84(2), 149-154. doi:10.1080/14620316.2009.11512496Esumi, T., Kitamura, Y., Hagihara, C., Yamane, H., & Tao, R. (2010). Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). Scientia Horticulturae, 125(4), 608-616. doi:10.1016/j.scienta.2010.05.016Giakountis, A., & Coupland, G. (2008). Phloem transport of flowering signals. Current Opinion in Plant Biology, 11(6), 687-694. doi:10.1016/j.pbi.2008.10.003Hashimoto, J. G., Beadles-Bohling, A. S., & Wiren, K. M. (2004). Comparison of RiboGreen®and 18S rRNA quantitation for normalizing real-time RT-PCR expression analysis. BioTechniques, 36(1), 54-60. doi:10.2144/04361bm06Jaeger, K. E., Graf, A., & Wigge, P. A. (2006). The control of flowering in time and space. Journal of Experimental Botany, 57(13), 3415-3418. doi:10.1093/jxb/erl159Jang, S., Torti, S., & Coupland, G. (2009). Genetic and spatial interactions betweenFT,TSFandSVPduring the early stages of floral induction in Arabidopsis. The Plant Journal, 60(4), 614-625. doi:10.1111/j.1365-313x.2009.03986.xJaya, E. S. K. D., Clemens, J., Song, J., Zhang, H., & Jameson, P. E. (2009). Quantitative expression analysis of meristem identity genes in Eucalyptus occidentalis: AP1 is an expression marker for flowering. Tree Physiology, 30(2), 304-312. doi:10.1093/treephys/tpp117Koshita, Y., Takahara, T., Ogata, T., & Goto, A. (1999). Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.). Scientia Horticulturae, 79(3-4), 185-194. doi:10.1016/s0304-4238(98)00209-xKotoda, N., Hayashi, H., Suzuki, M., Igarashi, M., Hatsuyama, Y., Kidou, S., … Abe, K. (2010). Molecular Characterization of FLOWERING LOCUS T-Like Genes of Apple (Malus × domestica Borkh.). Plant and Cell Physiology, 51(4), 561-575. doi:10.1093/pcp/pcq021Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., … Yu, H. (2008). A Repressor Complex Governs the Integration of Flowering Signals in Arabidopsis. Developmental Cell, 15(1), 110-120. doi:10.1016/j.devcel.2008.05.002Lord, E. M., & Eckard, K. J. (1985). Shoot Development in Citrus sinensis L. (Washington Navel Orange). I. Floral and Inflorescence Ontogeny. Botanical Gazette, 146(3), 320-326. doi:10.1086/337531Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009Matsuda, N., Ikeda, K., Kurosaka, M., Takashina, T., Isuzugawa, K., Endo, T., & Omura, M. (2009). Early Flowering Phenotype in Transgenic Pears (Pyrus communis L.) Expressing the CiFT Gene. Journal of the Japanese Society for Horticultural Science, 78(4), 410-416. doi:10.2503/jjshs1.78.410Michaels, S. D., Himelblau, E., Kim, S. Y., Schomburg, F. M., & Amasino, R. M. (2004). Integration of Flowering Signals in Winter-Annual Arabidopsis. Plant Physiology, 137(1), 149-156. doi:10.1104/pp.104.052811Moss, G. I. (1971). Effect of fruit on flowering in relation to biennial bearing in sweet orange(Citrus sinensis). Journal of Horticultural Science, 46(2), 177-184. doi:10.1080/00221589.1971.11514396Muñoz-Fambuena, N., Mesejo, C., Carmen González-Mas, M., Primo-Millo, E., AgustÃ, M., & Iglesias, D. J. (2011). Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Annals of Botany, 108(3), 511-519. doi:10.1093/aob/mcr164Muñoz-Fambuena, N., Mesejo, C., González-Mas, M. C., Iglesias, D. J., Primo-Millo, E., & AgustÃ, M. (2012). Gibberellic Acid Reduces Flowering Intensity in Sweet Orange [Citrus sinensis (L.) Osbeck] by Repressing CiFT Gene Expression. Journal of Plant Growth Regulation, 31(4), 529-536. doi:10.1007/s00344-012-9263-yNishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., Omura, M., & Ikoma, Y. (2007). Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). Journal of Experimental Botany, 58(14), 3915-3927. doi:10.1093/jxb/erm246Nishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., Kobayashi, Y., … Omura, M. (2010). Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Tree Physiology, 30(3), 431-439. doi:10.1093/treephys/tpp122Notaguchi, M., Abe, M., Kimura, T., Daimon, Y., Kobayashi, T., Yamaguchi, A., … Araki, T. (2008). Long-Distance, Graft-Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering. Plant and Cell Physiology, 49(11), 1645-1658. doi:10.1093/pcp/pcn154Peña, L., MartÃn-Trillo, M., Juárez, J., Pina, J. A., Navarro, L., & MartÃnez-Zapater, J. M. (2001). Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology, 19(3), 263-267. doi:10.1038/85719Pillitteri, L. J., Lovatt, C. J., & Walling, L. L. (2004). Isolation and Characterization of a TERMINAL FLOWER Homolog and Its Correlation with Juvenility in Citrus. Plant Physiology, 135(3), 1540-1551. doi:10.1104/pp.103.036178Pillitteri, L. J., Lovatt, C. J., & Walling, L. L. (2004). Isolation and Characterization of LEAFY and APETALA1 Homologues from Citrus sinensis L. Osbeck `Washington’. Journal of the American Society for Horticultural Science, 129(6), 846-856. doi:10.21273/jashs.129.6.0846Rottmann, W. H., Meilan, R., Sheppard, L. A., Brunner, A. M., Skinner, J. S., Ma, C., … Strauss, S. H. (2000). Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal, 22(3), 235-245. doi:10.1046/j.1365-313x.2000.00734.xSherman, W. B., & Beckman, T. G. (2003). CLIMATIC ADAPTATION IN FRUIT CROPS. Acta Horticulturae, (622), 411-428. doi:10.17660/actahortic.2003.622.43Southerton, S. G., Strauss, S. H., Olive, M. R., Harcourt, R. L., Decroocq, V., Zhu, X., … Dennis, E. S. (1998). Plant Molecular Biology, 37(6), 897-910. doi:10.1023/a:1006056014079Sreekantan, L., & Thomas, M. R. (2006). VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Functional Plant Biology, 33(12), 1129. doi:10.1071/fp06144Takada, S., & Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis Homolog of HETEROCHROMATIN PROTEIN1, Counteracts the Activation of FLOWERING LOCUS T by CONSTANS in the Vascular Tissues of Leaves to Regulate Flowering Time. The Plant Cell, 15(12), 2856-2865. doi:10.1105/tpc.016345Tan, F.-C., & Swain, S. M. (2007). Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiologia Plantarum, 131(3), 481-495. doi:10.1111/j.1399-3054.2007.00971.xTränkner, C., Lehmann, S., Hoenicka, H., Hanke, M.-V., Fladung, M., Lenhardt, D., … Flachowsky, H. (2010). Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta, 232(6), 1309-1324. doi:10.1007/s00425-010-1254-2Vemmos, S. N. (1999). Carbohydrate content of inflorescent buds of defruited and fruiting pistachio (Pistacia vera L) branches in relation to biennial bearing. The Journal of Horticultural Science and Biotechnology, 74(1), 94-100. doi:10.1080/14620316.1999.11511079Wada, M., Cao, Q., Kotoda, N., Soejima, J., & Masuda, T. (2002). Plant Molecular Biology, 49(6), 567-577. doi:10.1023/a:1015544207121Wigge, P. A. (2005). Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 309(5737), 1056-1059. doi:10.1126/science.1114358Yahata, D., Matsumoto, K., & Ushijima, K. (2004). Relationship between Flower-bud Differentiation and Carbohydrate Contents in Spring Shoots of Very-early, Early and Late Maturing Cultivars of Satsuma Mandarin. Engei Gakkai zasshi, 73(5), 405-410. doi:10.2503/jjshs.73.405Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., & Araki, T. (2005). TWIN SISTER OF FT (TSF) Acts as a Floral Pathway Integrator Redundantly with FT. Plant and Cell Physiology, 46(8), 1175-1189. doi:10.1093/pcp/pci151Yan, J., Yuan, F., Long, G., Qin, L., & Deng, Z. (2011). Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Molecular Biology Reports, 39(2), 1831-1838. doi:10.1007/s11033-011-0925-9YU, Q., MOORE, P. H., ALBERT, H. H., ROADER, A. H. K., & MING, R. (2005). Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL, in polygamous papaya. Cell Research, 15(8), 576-584. doi:10.1038/sj.cr.7290327Yu, X., Klejnot, J., & Lin, C. (2006). Florigen: One Found, More to Follow? Journal of Integrative Plant Biology, 48(6), 617-621. doi:10.1111/j.1744-7909.2006.00309.
Mechanisms and Biomarkers of Exercise-Induced Bronchoconstriction.
Exercise is a common trigger of bronchoconstriction. In recent years, there has been increased understanding of the pathophysiology of exercise-induced bronchoconstriction. Although evaporative water loss and thermal changes have been recognized stimuli for exercise-induced bronchoconstriction, accumulating evidence points toward a pivotal role for the airway epithelium in orchestrating the inflammatory response linked to exercise-induced bronchoconstriction. Overproduction of inflammatory mediators, underproduction of protective lipid mediators, and infiltration of the airways with eosinophils and mast cells are all established contributors to exercise-induced bronchoconstriction. Sensory nerve activation and release of neuropeptides maybe important in exercise-induced bronchoconstriction, but further research is warranted
"Laceratio famae" : invective as facework in Cicero's "In Pisonem".
Recent discussions of Cicero’s In Pisonem have approached the functioning of invective in the speech mainly in terms of the orator’s ability to fashion rhetorical weapons from the audience’s social biases and, consequently, have focused on evidence of his success in injuring his opponent’s reputation and dignity. That Piso, his opponent, had an equal opportunity and success in fighting back against Cicero’s attacks is, as I will argue, a crucial factor in determining the possible outcomes of this contest.
I argue that when the In Pisonem is viewed as a 'character contest', the conflict between Piso and Cicero appears to have been both unavoidable and yet inconclusive, despite evidence of Cicero's victory in the speech itself. While Cicero's attack on Piso displays superior rhetorical skill, humour and poise, the fact that Piso responded to the publication of the In Pisonem by publishing his own speech demonstrates that he was able to continue his side of the battle beyond Cicero's apparent victory. Although Cicero can claim a victory as the 'manifest outcome' of the Senate debate, it is clear that 'interpretological outcomes' came into play on both sides. Piso's persistence in the quarrel permits him a secondary claim to victory when Cicero, believing he has already won, decides not to respond. Comparison with Cicero's handling of Clodius' victory in the Bona Dea scandal, reinforces the importance of interpretation in determining the outcomes of invective contests. Win or lose, Roman orators will put the best face on their performance and emerge relatively unscathed from the 'character contests' in which their careers seem to hang in the balance. Piso's success in the conflict is seen as well in his continuation as Caesar's father-in-law, a role that Cicero clearly attempted to put in jeopardy in his attack. In this regard, Goffman's account of 'character contest' proves a reliable guide to understanding the grey areas which obscure the outcome of the conflict.Arts, Faculty ofClassical, Near Eastern and Religious Studies, Department ofGraduat
- …