2,196 research outputs found

    Geometric reasoning via internet crowdsourcing

    Get PDF
    The ability to interpret and reason about shapes is a peculiarly human capability that has proven difficult to reproduce algorithmically. So despite the fact that geometric modeling technology has made significant advances in the representation, display and modification of shapes, there have only been incremental advances in geometric reasoning. For example, although today's CAD systems can confidently identify isolated cylindrical holes, they struggle with more ambiguous tasks such as the identification of partial symmetries or similarities in arbitrary geometries. Even well defined problems such as 2D shape nesting or 3D packing generally resist elegant solution and rely instead on brute force explorations of a subset of the many possible solutions. Identifying economic ways to solving such problems would result in significant productivity gains across a wide range of industrial applications. The authors hypothesize that Internet Crowdsourcing might provide a pragmatic way of removing many geometric reasoning bottlenecks.This paper reports the results of experiments conducted with Amazon's mTurk site and designed to determine the feasibility of using Internet Crowdsourcing to carry out geometric reasoning tasks as well as establish some benchmark data for the quality, speed and costs of using this approach.After describing the general architecture and terminology of the mTurk Crowdsourcing system, the paper details the implementation and results of the following three investigations; 1) the identification of "Canonical" viewpoints for individual shapes, 2) the quantification of "similarity" relationships with-in collections of 3D models and 3) the efficient packing of 2D Strips into rectangular areas. The paper concludes with a discussion of the possibilities and limitations of the approach

    Validation of purdue engineering shape benchmark clusters by crowdsourcing

    Get PDF
    The effective organization of CAD data archives is central to PLM and consequently content based retrieval of 2D drawings and 3D models is often seen as a "holy grail" for the industry. Given this context, it is not surprising that the vision of a "Google for shape", which enables engineers to search databases of 3D models for components similar in shape to a query part, has motivated numerous researchers to investigate algorithms for computing geometric similarity. Measuring the effectiveness of the many approaches proposed has in turn lead to the creation of benchmark datasets against which researchers can compare the performance of their search engines. However to be useful the datasets used to measure the effectiveness of 3D retrieval algorithms must not only define a collection of models, but also provide a canonical specification of their relative similarity. Because the objective of shape retrieval algorithms is (typically) to retrieve groups of objects that humans perceive as "similar" these benchmark similarity relationships have (by definition) to be manually determined through inspection

    Effects of ultrasound on polymeric foam porosity

    Get PDF
    A variety of materials require functionally graded cellular microstructures whose porosity is engineered to meet specific applications (e.g. mimic bone structure for orthopaedic applications; fulfil mechanical, thermal or acoustic constraints in structural foamed components, etc.). Although a huge variety of foams can be manufactured with homogenous porosity, there are no generic processes for controlling the distribution of porosity within the resulting matrix. Motivated by the desire to create a flexible process for engineering heterogeneous foams, the authors have investigated how ultrasound, applied during the formation of a polyurethane foam, affects its cellular structure. The experimental results demonstrated how the parameters of ultrasound exposure (i.e. frequency and applied power) influenced the volume and distribution of pores within the final polyurethane matrix: the data demonstrates that porosity (i.e. volume fraction) varies in direct proportion to both the acoustic pressure and frequency of the ultrasound signal. The effects of ultrasound on porosity demonstrated by this work offer the prospect of a manufacturing process that can adjust the cellular geometry of foam and hence ensure that the resulting characteristics match the functional requirements

    First-Principles Study on Peierls Instability in Infinite Single-Row Al Wires

    Full text link
    We present the relation between the atomic and spin-electronic structures of infinite single-row atomic wires made of Al atoms during their elongation using first-principles molecular-dynamics simulations. Our study reveals that the Peierls transition indeed occurs in the wire with magnetic ordering: it ruptures to form a trimerized structure with antiferromagnetic ordering and changes from a conductor to an insulator just before forming a linear wire of equally-spaced atoms. The formation of the trimerized wire is discussed in terms of the behavior of the σ\sigma-symmetry bands of the Al wire.Comment: 10 pages, 4 figure

    Study of the f2(1270)f_2(1270), f2(1525)f_2'(1525), f0(1370)f_0(1370) and f0(1710)f_0(1710) in the J/ψJ/\psi radiative decays

    Get PDF
    In this paper we present an approach to study the radiative decay modes of the J/ψJ/\psi into a photon and one of the tensor mesons f2(1270)f_2(1270), f2(1525)f'_2(1525), as well as the scalar ones f0(1370)f_0(1370) and f0(1710)f_0(1710). Especially we compare predictions that emerge from a scheme where the states appear dynamically in the solution of vector meson--vector meson scattering amplitudes to those from a (admittedly naive) quark model. We provide evidence that it might be possible to distinguish amongst the two scenarios, once improved data are available.Comment: The large Nc argument improved; version published in EPJA

    Radiative open charm decay of the Y(3940), Z(3930), X(4160) resonances

    Get PDF
    We determine the radiative decay amplitudes for decay into DD^* and Dˉγ\bar{D} \gamma, or DsD^*_s and Dˉsγ\bar{D}_s \gamma of some of the charmonium like states classified as X,Y,Z resonances, plus some other hidden charm states which are dynamically generated from the interaction of vector mesons with charm. The mass distributions as a function of the Dˉγ\bar{D} \gamma or Dˉsγ\bar{D}_s \gamma invariant mass show a peculiar behavior as a consequence of the DDˉD^* \bar{D}^* nature of these states. The experimental search of these magnitudes can shed light on the nature of these states.Comment: 18 pages, 9 figure

    Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions

    Full text link
    The stellar mass-luminosity relation (MLR) is one of the most famous empirical "laws", discovered in the beginning of the 20th century. MLR is still used to estimate stellar masses for nearby stars, particularly for those that are not binary systems, hence the mass cannot be derived directly from the observations. It's well known that the MLR has a statistical dispersion which cannot be explained exclusively due to the observational errors in luminosity (or mass). It is an intrinsic dispersion caused by the differences in age and chemical composition from star to star. In this work we discuss the impact of age and metallicity on the MLR. Using the recent data on mass, luminosity, metallicity, and age for 26 FGK stars (all members of binary systems, with observational mass-errors <= 3%), including the Sun, we derive the MLR taking into account, separately, mass-luminosity, mass-luminosity-metallicity, and mass-luminosity-metallicity-age. Our results show that the inclusion of age and metallicity in the MLR, for FGK stars, improves the individual mass estimation by 5% to 15%.Comment: 7 pages, 4 figures, 1 table, accepted in Astrophysics and Space Scienc

    Galaxy-wide radio-induced feedback in a radio-quiet quasar

    Get PDF
    We report the discovery of a radio-quiet type 2 quasar (SDSS J165315.06+234943.0 nicknamed the ‘Beetle’ at z = 0.103) with unambiguous evidence for active galactic nucleus (AGN) radio-induced feedback acting across a total extension of ∼46 kpc and up to ∼26 kpc from the AGN. To the best of our knowledge, this is the first radio-quiet system where radio-induced feedback has been securely identified at ≫several kpc from the AGN. The morphological, ionization and kinematic properties of the extended ionized gas are correlated with the radio structures. We find along the radio axis (a) enhancement of the optical line emission at the location of the radio hotspots (b) turbulent gas kinematics (FWHM ∼ 380–470 km s−1) across the entire spatial range circumscribed by them (c) ionization minima for the turbulent gas at the location of the hot spots, (d) high temperature Te ≳ 1.9 × 104 K at the NE hotspot. Turbulent gas is also found far from the radio axis, ∼25 kpc in the perpendicular direction. We propose a scenario in which the radio structures have perforated the interstellar medium of the galaxy and escaped into the circumgalactic medium. While advancing, they have interacted with in situ gas modifying its properties. Our results show that jets of modest power can be the dominant feedback mechanism acting across huge volumes in radio-quiet systems, including highly accreting luminous AGNs, where radiative mode feedback may be expected

    Transcultural adaptation and validation of the ' Hip and Knee ' questionnaire into Spanish

    Get PDF
    BACKGROUND: The purpose of the present study is to translate and validate the 'Hip and Knee Outcomes Questionnaire', developed in English, into Spanish. The 'Hip and Knee Outcomes Questionnaire is a questionnaire planned to evaluate the impact in quality of life of any problem related to the human musculoskeletal system. 10 scientific associations developed it. METHODS: The questionnaire underwent a validated translation/retro-translation process. Patients undergoing primary knee arthroplasty, before and six months postoperative, tested the final version in Spanish. Psychometric properties of feasibility, reliability, validity and sensitivity to change were assessed. Convergent validity with SF-36 and WOMAC questionnaires was evaluated. RESULTS: 316 patients were included. Feasibility: a high number of missing items in questions 3, 4 and 5 were observed. The number of patients with a missing item was 171 (51.35%) in the preoperative visit and 139 (44.0%) at the postoperative. Internal validity: revision of coefficients in the item-rest correlation recommended removing question 6 during the preoperative visit (coefficient <0.20). Convergent validity: coefficients of correlation with WOMAC and SF-36 scales confirm the questionnaire's validity. Sensitivity to change: statistically significant differences were found between the mean scores of the first visit compared to the postoperative. CONCLUSION: The proposed translation to Spanish of the 'Hip and Knee Questionnaire' is found to be reliable, valid and sensible to changes produced at the clinical practice of patients undergoing primary knee arthroplasty. However, some changes at the completion instructions are recommended. LEVEL OF EVIDENCE: Level I. Prognostic study
    corecore