433 research outputs found

    Properties of Light Flavour Baryons in Hypercentral quark model

    Full text link
    The light flavour baryons are studied within the quark model using the hyper central description of the three-body system. The confinement potential is assumed as hypercentral coulomb plus power potential (hCPPνhCPP_\nu) with power index ν\nu. The masses and magnetic moments of light flavour baryons are computed for different power index, ν\nu starting from 0.5 to 1.5. The predicted masses and magnetic moments are found to attain a saturated value with respect to variation in ν\nu beyond the power index ν>\nu> 1.0. Further we computed transition magnetic moments and radiative decay width of light flavour baryons. The results are in good agreement with known experimental as well as other theoretical models.Comment: Accepted in Pramana J. of Physic

    Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins

    Get PDF
    Lower-extremity venous insufficiency is a common condition, associated with considerable health care costs. Endovenous laser ablation is increasingly used as therapy, but its mechanism of action is insufficiently understood. Here, direct absorption of the laser light, collapsing steam bubbles and direct fiber-wall contact have all been mentioned as contributing mechanisms. Because fiber tips have reported temperatures of 800-1,300°C during endovenous laser ablation, we sought to assess whether heat conduction from the hot tip could cause irreversible thermal injury to the venous wall. We approximated the hot fiber tip as a sphere with diameter equal to the fiber diameter, having a steady state temperature of 800°C or 1,000°C. We computed venous wall temperatures due to heat conduction from this hot sphere, varying the pullback velocity of the fiber and the diameter of the vein. Venous wall temperatures corresponding to irreversible injury resulted for a 3 mm diameter vein and pullback velocities <3 mm/s but not for 5 mm and 1 mm/s. The highest wall temperature corresponded to the position on the wall closest to the fiber tip, hence it moves longitudinally in parallel with the moving fiber tip. We concluded that heat conduction from the hot fiber tip is a contributing mechanism in endovenous laser ablation

    Microdevices for extensional rheometry of low viscosity elastic liquids : a review

    Get PDF
    Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations

    Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography

    Get PDF
    Endovenous laser ablation (EVLA) is commonly used to treat saphenous varicosities. Very high temperatures at the laser fibre tip have been reported during EVLA. We hypothesized that the laser irradiation deposits a layer of strongly absorbing carbonized blood of very high temperature on the fibre tip. We sought to prove the existence of these layers and study their properties by optical transmission, optical coherence tomography (OCT) and microscopy. We analysed 23 EVLA fibres, 8 used at 810 nm, 7 at 940 nm and 8 at 1,470 nm. We measured the transmission of these fibres in two wavelength bands (450–950 nm; 950–1,650 nm). We used 1,310 nm OCT to assess the thickness of the layers and the attenuation as a function of depth to determine the absorption coefficient. Microscopy was used to view the tip surface. All fibres showed a slightly increasing transmission with wavelength in the 450–950 nm band, and a virtually wavelength-independent transmission in the 950–1,650 nm band. OCT scans showed a thin layer deposited on all 13 fibres investigated, 6 used at 810 nm, 4 at 940 nm and 3 at 1,470 nm, some with inhomogeneities over the tip area. The average absorption coefficient of the 13 layers was 72 ± 16 mm−1. The average layer thickness estimated from the transmission and absorption measurements was 8.0 ± 2.7 µm. From the OCT data, the average maximal thickness was 26 ± 6 µm. Microscopy of three fibre tips, one for each EVLA wavelength, showed rough, cracked and sometimes seriously damaged tip surfaces. There was no clear correlation between the properties of the layers and the EVLA parameters such as wavelength, except for a positive correlation between layer thickness and total delivered energy. In conclusion, we found strong evidence that all EVLA procedures in blood filled veins deposit a heavily absorbing hot layer of carbonized blood on the fibre tip, with concomitant tip damage. This major EVLA mechanism is unlikely to have much wavelength dependence at similar delivered energies per centimetre of vein. Optical–thermal interaction between the vein wall and the transmitted laser light depends on wavelength

    An epidemiological study of respiratory syncytial virus associated hospitalizations in Denmark

    Get PDF
    Respiratory syncytial virus (RSV) is the most common viral pathogen that causes lower respiratory tract infections in infants. Studies have implicated severe RSV infections early in life as a risk factor for subsequent development of reactive airway disease. We are conducting a study to validate RSV-associated diagnoses in the Danish National Patient Registry, to assess whether the incidence of severe RSV infection is increasing in Denmark, to identify predisposing and protective factors for RSV-associated hospitalization in Denmark, and to examine the association of severe RSV infection with reactive airway disease. The influence of various biological, social and environmental factors on hospitalization for RSV infection will be studied through several population-based registers, including the Danish National Birth Cohort: 'Better health for mothers and children'. The RSV hospitalization cases will be compared with control individuals selected within the same population groups on a case–control or a cohort basis in order to produce estimates of age-adjusted and sex-adjusted relative risks (odds ratio and relative risk) for hospitalization associated with various risk factors. Using register linkage and unique registration of exposures collected through interviews and blood samples from the Danish National Birth Cohort, we will be able to resolve the issues referred to above in a very large sample of Danish children

    What Was I Thinking? Eye-Tracking Experiments Underscore the Bias that Architecture Exerts on Nuclear Grading in Prostate Cancer

    Get PDF
    We previously reported that nuclear grade assignment of prostate carcinomas is subject to a cognitive bias induced by the tumor architecture. Here, we asked whether this bias is mediated by the non-conscious selection of nuclei that “match the expectation” induced by the inadvertent glance at the tumor architecture. 20 pathologists were asked to grade nuclei in high power fields of 20 prostate carcinomas displayed on a computer screen. Unknown to the pathologists, each carcinoma was shown twice, once before a background of a low grade, tubule-rich carcinoma and once before the background of a high grade, solid carcinoma. Eye tracking allowed to identify which nuclei the pathologists fixated during the 8 second projection period. For all 20 pathologists, nuclear grade assignment was significantly biased by tumor architecture. Pathologists tended to fixate on bigger, darker, and more irregular nuclei when those were projected before kigh grade, solid carcinomas than before low grade, tubule-rich carcinomas (and vice versa). However, the morphometric differences of the selected nuclei accounted for only 11% of the architecture-induced bias, suggesting that it can only to a small part be explained by the unconscious fixation on nuclei that “match the expectation”. In conclusion, selection of « matching nuclei » represents an unconscious effort to vindicate the gravitation of nuclear grades towards the tumor architecture

    Concerted Action of Two Formins in Gliding Motility and Host Cell Invasion by Toxoplasma gondii

    Get PDF
    The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Gender differences in colorectal cancer: implications for age at initiation of screening

    Get PDF
    There is some variation regarding age at initiation of screening for colorectal cancer (CRC) between countries, but the same age of initiation is generally recommended for women and men within countries, despite important gender differences in the epidemiology of CRC. We have explored whether, and to what extent, these differences would be relevant regarding age at initiation of CRC screening. Using population-based cancer registry data from the US and national mortality statistics from different countries, we looked at cumulative 10-year incidence and mortality of CRC reached among men at ages 50, 55, and 60, and found that women mainly reached equivalent levels when 4 to 8 years older. The gender differences were remarkably constant across populations and over time. These patterns suggest that gender differentiation of age at initiation may be worthwhile to utilise CRC-screening resources more efficiently

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
    corecore