6 research outputs found

    Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset bacterial sepsis is a feared complication of the newborn. A large proportion of infants admitted to the Neonatal Intensive Care Unit (NICU) for suspected sepsis receive treatment with potent systemic antibiotics while a diagnostic workup is in progress. The gold standard for detecting bacterial sepsis is blood culture. However, as pathogens in blood cultures are only detected in approximately 25% of patients, the sensitivity of blood culture is suspected to be low. Therefore, the diagnosis of sepsis is often based on the development of clinical signs, in combination with laboratory tests such as a rise in C – reactive protein (CRP). Molecular assays for the detection of bacterial DNA in the blood represent possible new diagnostic tools for early identification of a bacterial cause.</p> <p>Methods</p> <p>A broad range 16S rDNA polymerase chain reaction (PCR) without preincubation was compared to conventional diagnostic work up for clinical sepsis, including BACTEC blood culture, for early determination of bacterial sepsis in the newborn. In addition, the relationship between known risk factors, clinical signs, and laboratory parameters considered in clinical sepsis in the newborn were explored.</p> <p>Results</p> <p>Forty-eight infants with suspected sepsis were included in this study. Thirty-one patients were diagnosed with sepsis, only 6 of these had a positive blood culture. 16S rDNA PCR analysis of blinded blood samples from the 48 infants revealed 10 samples positive for the presence of bacterial DNA. PCR failed to be positive in 2 samples from blood culture positive infants, and was positive in 1 sample where a diagnosis of a non-septic condition was established. Compared to blood culture the diagnosis of bacterial proven sepsis by PCR revealed a 66.7% sensitivity, 87.5% specificity, 95.4% positive and 75% negative predictive value. PCR combined with blood culture revealed bacteria in 35.1% of the patients diagnosed with sepsis. Irritability and feeding difficulties were the clinical signs most often observed in sepsis. CRP increased in the presence of bacterial infection.</p> <p>Conclusion</p> <p>There is a need for PCR as a method to quickly point out the infants with sepsis. However, uncertainty about a bacterial cause of sepsis was not reduced by the PCR result, reflecting that methodological improvements are required in order for DNA detection to replace or supplement traditional blood culture in diagnosis of bacterial sepsis.</p

    Preliminary results in the immunodiagnosis of tuberculosis in children based on T cell responses to ESAT-6 and PPD antigens

    No full text
    The aim of this work was to study the difference in interferon gamma (IFN-gamma) production by T lymphocytes after early secretory antigen target 6 (ESAT-6) or purified protein derivate (PPD) stimulation in whole blood culture supernatants from children with suspected tuberculosis (TB) disease (n = 21), latent TB infection (n = 16) and negative controls (NC) (n = 22) from an endemic area in Brazil. The concentration of IFN-gamma (pg/ml) was measured by enzyme linked immunosorbent assay and the differences in the IFN-gamma levels for each group were compared and evaluated using an unpaired Student's t-test; p values < 0.05 were considered significant. Measurement of IFN-gamma levels after ESAT-6 stimulation raised the possibility of early diagnosis in the latent TB group (p = 0.0030). Nevertheless, the same group showed similar responses to the NC group (p > 0.05) after PPD stimulation. The IFN-gamma assay using ESAT-6 as an antigenic stimulus has the potential to be used as a tool for the immunodiagnosis of early TB in children

    Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton–proton collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: A search for pair production of scalar leptoquarks, each decaying into either an electron or a muon and a top quark, is presented. This is the first leptoquark search using ATLAS data to investigate top-philic cross-generational couplings that could provide explanations for recently observed anomalies in B meson decays. This analysis targets high leptoquark masses which cause the decay products of each resultant top quark to be contained within a single high-pT large-radius jet. The full Run 2 dataset is exploited, consisting of 139fb-1 of data collected from proton–proton collisions at s=13TeV from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. In the absence of any significant deviation from the background expectation, lower limits on the leptoquark masses are set at 1480GeV and 1470GeV for the electron and muon channel, respectively
    corecore