153 research outputs found

    The Waiting Time for Inter-Country Spread of Pandemic Influenza

    Get PDF
    BACKGROUND: The time delay between the start of an influenza pandemic and its subsequent initiation in other countries is highly relevant to preparedness planning. We quantify the distribution of this random time in terms of the separate components of this delay, and assess how the delay may be extended by non-pharmaceutical interventions. METHODS AND FINDINGS: The model constructed for this time delay accounts for: (i) epidemic growth in the source region, (ii) the delay until an infected individual from the source region seeks to travel to an at-risk country, (iii) the chance that infected travelers are detected by screening at exit and entry borders, (iv) the possibility of in-flight transmission, (v) the chance that an infected arrival might not initiate an epidemic, and (vi) the delay until infection in the at-risk country gathers momentum. Efforts that reduce the disease reproduction number in the source region below two and severe travel restrictions are most effective for delaying a local epidemic, and under favourable circumstances, could add several months to the delay. On the other hand, the model predicts that border screening for symptomatic infection, wearing a protective mask during travel, promoting early presentation of cases arising among arriving passengers and moderate reduction in travel volumes increase the delay only by a matter of days or weeks. Elevated in-flight transmission reduces the delay only minimally. CONCLUSIONS: The delay until an epidemic of pandemic strain influenza is imported into an at-risk country is largely determined by the course of the epidemic in the source region and the number of travelers attempting to enter the at-risk country, and is little affected by non-pharmaceutical interventions targeting these travelers. Short of preventing international travel altogether, eradicating a nascent pandemic in the source region appears to be the only reliable method of preventing country-to-country spread of a pandemic strain of influenza

    Quarantine for pandemic influenza control at the borders of small island nations

    Get PDF
    Background: Although border quarantine is included in many influenza pandemic plans, detailed guidelines have yet to be formulated, including considerations for the optimal quarantine length. Motivated by the situation of small island nations, which will probably experience the introduction of pandemic influenza via just one airport, we examined the potential effectiveness of quarantine as a border control measure. Methods: Analysing the detailed epidemiologic characteristics of influenza, the effectiveness of quarantine at the borders of islands was modelled as the relative reduction of the risk of releasing infectious individuals into the community, explicitly accounting for the presence of asymptomatic infected individuals. The potential benefit of adding the use of rapid diagnostic testing to the quarantine process was also considered. Results: We predict that 95% and 99% effectiveness in preventing the release of infectious individuals into the community could be achieved with quarantine periods of longer than 4.7 and 8.6 days, respectively. If rapid diagnostic testing is combined with quarantine, the lengths of quarantine to achieve 95% and 99% effectiveness could be shortened to 2.6 and 5.7 days, respectively. Sensitivity analysis revealed that quarantine alone for 8.7 days or quarantine for 5.7 days combined with using rapid diagnostic testing could prevent secondary transmissions caused by the released infectious individuals for a plausible range of prevalence at the source country (up to 10%) and for a modest number of incoming travellers (up to 8000 individuals). Conclusion: Quarantine atthe borders of island nations could contribute substantially to preventing the arrival of pandemic influenza (or at least delaying the arrival date). For small island nations we recommend consideration of quarantine alone for 9 days or quarantine for 6 days combined with using rapid diagnostic testing (if available). © 2009 Nishiura et al; licensee BioMed Central Ltd.published_or_final_versio

    Intracranial injection of dengue virus induces interferon stimulated genes and CD8(+) T cell infiltration by sphingosine kinase 1 independent pathways

    Get PDF
    We have previously reported that the absence of sphingosine kinase 1 (SK1) affects both dengue virus (DENV) infection and innate immune responses in vitro. Here we aimed to define SK1-dependancy of DENV-induced disease and the associated innate responses in vivo. The lack of a reliable mouse model with a fully competent interferon response for DENV infection is a challenge, and here we use an experimental model of DENV infection in the brain of immunocompetent mice. Intracranial injection of DENV-2 into C57BL/6 mice induced body weight loss and neurological symptoms which was associated with a high level of DENV RNA in the brain. Body weight loss and DENV RNA level tended to be greater in SK1-/- compared with wildtype (WT) mice. Brain infection with DENV-2 is associated with the induction of interferon-β (IFN-β) and IFN-stimulated gene (ISG) expression including viperin, Ifi27l2a, IRF7, and CXCL10 without any significant differences between WT and SK1-/- mice. The SK2 and sphingosine-1-phosphate (S1P) levels in the brain were unchanged by DENV infection or the lack of SK1. Histological analysis demonstrated the presence of a cellular infiltrate in DENV-infected brain with a significant increase in mRNA for CD8 but not CD4 suggesting this infiltrate is likely CD8+ but not CD4+ T-lymphocytes. This increase in T-cell infiltration was not affected by the lack of SK1. Overall, DENV-infection in the brain induces IFN and T-cell responses but does not influence the SK/S1P axis. In contrast to our observations in vitro, SK1 has no major influence on these responses following DENV-infection in the mouse brain.Wisam H. Al-Shujairi, Jennifer N. Clarke, Lorena T. Davies, Mohammed Alsharifi, Stuart M. Pitson, Jillian M. Car

    Effect of blood glucose level on standardized uptake value (SUV) in F-18- FDG PET-scan : a systematic review and meta-analysis of 20,807 individual SUV measurements

    Get PDF
    Objectives To evaluate the effect of pre-scan blood glucose levels (BGL) on standardized uptake value (SUV) in F-18-FDG-PET scan. Methods A literature review was performed in the MEDLINE, Embase, and Cochrane library databases. Multivariate regression analysis was performed on individual datum to investigate the correlation of BGL with SUVmax and SUVmean adjusting for sex, age, body mass index (BMI), diabetes mellitus diagnosis, F-18-FDG injected dose, and time interval. The ANOVA test was done to evaluate differences in SUVmax or SUVmean among five different BGL groups (200 mg/dl). Results Individual data for a total of 20,807 SUVmax and SUVmean measurements from 29 studies with 8380 patients was included in the analysis. Increased BGL is significantly correlated with decreased SUVmax and SUVmean in brain (p <0.001, p <0.001,) and muscle (p <0.001, p <0.001) and increased SUVmax and SUVmean in liver (p = 0.001, p = 0004) and blood pool (p=0.008, p200 mg/dl had significantly lower SUVmax. Conclusion If BGL is lower than 200mg/dl no interventions are needed for lowering BGL, unless the liver is the organ of interest. Future studies are needed to evaluate sensitivity and specificity of FDG-PET scan in diagnosis of malignant lesions in hyperglycemia.Peer reviewe

    Production of dust by massive stars at high redshift

    Full text link
    The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3-40 Msun using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and Astrophysics Revie

    Measurements of W+W−+ ≥ 1 jet production cross-sections in pp collisions at s \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    Fiducial and differential cross-section measurements of W+W− production in association with at least one hadronic jet are presented. These measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton-proton collision data collected at p s = 13TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139 fb−1. Events are selected with exactly one oppositely charged electron-muon pair and at least one hadronic jet with a transverse momentum of pT > 30 GeV and a pseudorapidity of |�| < 4.5. After subtracting the background contributions and correcting for detector effects, the jet-inclusive W+W−+ � 1 jet fiducial cross-section and W+W−+ jets differential cross-sections with respect to several kinematic variables are measured. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the W+W− system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced

    Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents

    Get PDF
    Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010–2012) and Run 2 (2015–2018) of the Large Hadron Collider. The extracted fluence shows a much stronger |z|-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.publishedVersio

    Measurement of the tt¯tt¯ production cross section in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26+17−15 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24+7−6 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb

    Configuration and performance of the ATLAS b-jet triggers in Run 2

    Get PDF
    Several improvements to the ATLAS triggers used to identify jets containing b-hadrons (b-jets) were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018. These changes include reconfiguring the b-jet trigger software to improve primary-vertex finding and allow more stable running in conditions with high pile-up, and the implementation of the functionality needed to run sophisticated taggers used by the offline reconstruction in an online environment. These improvements yielded an order of magnitude better light-flavour jet rejection for the same b-jet identification efficiency compared to the performance in Run 1 (2011–2012). The efficiency to identify b-jets in the trigger, and the conditional efficiency for b-jets that satisfy offline b-tagging requirements to pass the trigger are also measured. Correction factors are derived to calibrate the b-tagging efficiency in simulation to match that observed in data. The associated systematic uncertainties are substantially smaller than in previous measurements. In addition, b-jet triggers were operated for the first time during heavy-ion data-taking, using dedicated triggers that were developed to identify semileptonic b-hadron decays by selecting events with geometrically overlapping muons and jets
    corecore