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Abstract
Objectives To evaluate the effect of pre-scan blood glucose levels (BGL) on standardized uptake value (SUV) in 18F-FDG-PETscan.
Methods A literature review was performed in the MEDLINE, Embase, and Cochrane library databases. Multivariate regression
analysis was performed on individual datum to investigate the correlation of BGL with SUVmax and SUVmean adjusting for sex, age,
bodymass index (BMI), diabetes mellitus diagnosis, 18F-FDG injected dose, and time interval. The ANOVA test was done to evaluate
differences in SUVmax or SUVmean among five different BGL groups (< 110, 110–125, 125–150, 150–200, and > 200 mg/dl).
Results Individual data for a total of 20,807 SUVmax and SUVmean measurements from 29 studies with 8380 patients was
included in the analysis. Increased BGL is significantly correlated with decreased SUVmax and SUVmean in brain (p < 0.001,
p < 0.001,) and muscle (p < 0.001, p < 0.001) and increased SUVmax and SUVmean in liver (p = 0.001, p = 0004) and blood pool
(p = 0.008, p < 0.001). No significant correlation was found between BGL and SUVmax or SUVmean in tumors. In the ANOVA
test, all hyperglycemic groups had significantly lower SUVs compared with the euglycemic group in brain and muscle, and
significantly higher SUVs in liver and blood pool. However, in tumors only the hyperglycemic group with BGL of > 200 mg/dl
had significantly lower SUVmax.
Conclusion If BGL is lower than 200 mg/dl no interventions are needed for lowering BGL, unless the liver is the organ of
interest. Future studies are needed to evaluate sensitivity and specificity of FDG-PET scan in diagnosis of malignant lesions in
hyperglycemia.
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Introduction

In recent decades, fluorodeoxyglucose positron emission to-
mography (FDG-PET) has emerged as a pivotal imaging mo-
dality in clinical oncology [1–7]. Currently, thousands of PET
scanners have been installed worldwide and are extensively
used for diagnosis and staging ofmalignant tumors [8–12] and
assessment of response to radiochemotherapy [13–16]. It is
reported that PET results alter staging and treatment manage-
ment in nearly 40% of patients [17].

The crucial role of FDG-PETscan in cancer imaging is due
to its sensitivity in detection of different types of malignant
tumors owing to their increased glycolysis and metabolism
rate compared with normal tissues [18–21]. Glucose transport
proteins (GLUTs) transport glucose and 18F-FDG as its la-
beled analogue into the cells [22, 23], where they are phos-
phorylated into glucose-6-phosphate (G-6-P) and 18F-FDG-6-
phosphate (FDG-6-P). Unlike G-6-P, 18F-FDG-6-P is not a
substrate for G-6-P isomerase; therefore, it is trapped inside
the cells and detected by the PETscanner [24–26]. As GLUTs
transport both 18F-FDG and unlabeled glucose, it is assumed
that in a hyperglycemic state GLUTs will be saturated by
excess unlabeled glucose [27–29]; and therefore, secondary
to competition between endogenous glucose and 18F-FDG,
FDG uptake will reduce in different tissues. Moreover, some
of these GLUTs are insulin-dependent transporters such as
GLUT4 in skeletal muscle [30, 31], which may facilitate glu-
cose and 18F-FDG cell uptake in patients with high insulin
level, and may result in diminishing glucose and 18F-FDG cell
uptake in insulin resistance status. Thus, pre-scan hyperglyce-
mia can potentially lead into a distorted tumor-to-target uptake
ratio, and hence decrease the sensitivity of the PET scan.

A significant and increasing proportion of patients who
undergo PET scan are in a hyperglycemic state. Diabetes
[32, 33], medications such as corticosteroids [34, 35] or che-
motherapy agents [36, 37], and anxiety [38] are the leading
causes of high blood glucose levels (BGL) in patients under-
going PET-scan. In a study of 13,063 patients who underwent
FDG- PET scan, pre-scan BGL was higher than 200 mg/dl in
1698 subjects (13%) [32].

Considering the potential effect of pre-scan BGL on FDG
uptake, and high prevalence of pre-scan hyperglycemia, dif-
ferent PET scan preparation protocols have tried to define the
optimal pre-scan BGL. Society of Nuclear Medicine and
Molecular Imaging (SNMMI) [39] guidelines recommend
rescheduling the scan if BGL is greater than a wide range of
150–200 mg/dl. European Association of Nuclear Medicine
(EANM) [40] guidelines suggest if the plasma glucose level is
higher than or equal to 200 mg/dl, the FDG PET/CT study
should be rescheduled. EANMguidelines recommend a lower
acceptable upper pre-scan BGL for research purposes (i.e.,
between 126 and 150 mg/dl). Both of these guidelines suggest
that pre-scan BGLmay be reduced by administration of rapid-

acting insulin. However, the EANM guidelines also note the
impact of longer-acting insulin, and recommend specific time
intervals for acceptable administration of the different acting
insulins prior to scan [40]. The inconsistency between differ-
ent guidelines, which originates from lack of robust and cred-
ible evidence, has resulted in a diverse range of accepted pre-
scan BGLs in clinical PET imaging. In a Web-based survey of
PET/CT users [41], 128 PET users frommedical centers in the
Americas, Europe, Asia Pacific, andMiddle East responded to
the question regarding the pre-scan BGL cut-off used in their
centers. Cut-off values varied from 150 to 250 mg/dl (8.3–
13.9 mmol/l), and 7% of the sites used no cut-off.

The disagreement with regard to the acceptable pre-scan
BGL calls for an accurate and evidence-based answer. As
mentioned above, considering the potential influence of pre-
scan BGL on FDG uptake, hyperglycemia during FDG-PET
scan may decrease the sensitivity of FDG-PET in detection of
malignant tissue. On the other hand, unnecessary interven-
tions aimed at lowering the BGL are time- and resources-con-
suming, including insulin injection, which may also increase
background FDG uptake and therefore decrease PET scan
sensitivity [42]. Moreover, rescheduling the scan is trouble-
some for patients who need to travel long distances to access
PET scan, patients who need urgent examination, and patients
who are unwilling to be rescheduled. To the best of our knowl-
edge, no systematic review and meta-analysis has yet quanti-
tatively evaluated the effect of pre-scan BGL on FDG uptake.
Herein, through meta-analysis of individual data, we have
tried to elucidate the association between pre-scan BGLs and
standardized uptake values (SUV), the most frequently used
parameter to measure tissue FDG accumulation [43–45].

Methods

This systematic review and meta-analysis study was conduct-
ed in accordance with guidelines recommended in Cochrane
Handbook for Systematic Reviews [46]. We adhered to the
recommendations outlined in the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) statement
[47] during reporting of the current study’s findings.

Literature search

Studies were identified through electronic search of
MEDLINE (PubMed), Embase and Cochrane library data-
bases, using a sensitive search strategy. Keywords were se-
lected on the basis of expert opinion, review of literature, and
medical subject headings (MeSH), and Excerpta Medica Tree
(EMTREE) terms. No limitations were applied for language
or year of publications. The initial search was performed in
September 2017, and last updated in January 2018.
Furthermore, potentially missed additional citations were
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manually searched using reference lists of included articles.
Identification of unpublished work was attempted by
contacting experts and authors of included studies.

We used the following search terms: (positron emission
tomography or PET or positron emission tomography/
computed tomography or PET/CT or PET-CT or suvmax or
suvmean or suvs or suv or suvaverage or “standard uptake
value”) AND (hyperglycaemia or hyperglycemia or hypergly-
cemic or euglycaemia or euglycemia or euglycemic or “blood
glucose” or “blood sugar” or “plasma glucose” or “plasma
sugar” or “serum glucose” or “serum sugar” or FBS or “glu-
cose level” or “sugar level”).

Study selection

18F-FDG-PETor 18F-FDG-PET/CTstudies that reported SUV
(mean or maximum) for any tumor or normal organ were
included. Blood glucose level had to be measured prior to
PET scan, immediately before the intravenous administration
of FDG, after at least 4 h of fasting. All malignant lesions had
to be confirmed by biopsy or surgical histopathology.
Duplicate reports of the same data, animal studies, case re-
ports, case series with less than ten patients, editorials, and
review articles were excluded.Moreover, studies were exclud-
ed when there was any condition that could interfere with the
relationship between pre-scan BGL and SUVs, including
SUVs that were normalized to BGL or lean body mass instead
of body weight, or patients who had received insulin or any
oral anti-hyperglycemic within 4 h prior to PET scan.
Corresponding authors of the included studies were contacted,
and asked to provide the raw individual patient data for their
study. Mean and standard deviation (SD) of SUV measure-
ments and pre-scan BGL had to be reported individually for
each patient. Studies that failed to provide such information
were also excluded.

After omitting duplicate citations, two independent re-
viewers (ME and MHK), blind to the journals and authors,
screened titles and abstracts and then full texts to identify
studies eligible for inclusion. Disagreements between the re-
viewers were resolved through joint revision of the article and
discussion.

Data collection

Two reviewers independently extracted data from included
studies using a pre-specified and piloted data extraction sheet.
Disagreements were resolved through discussion between the
two authors, and if necessary, a third senior investigator
(APM) extracted the data and then discussed the results with
reviewers in order to reach consensus.

The following data were extracted from each study: first au-
thor’s name, year of publication, study design, type of scan (PET
or PET/CT), number of patients, number of scans, and duration

of fasting prior to scan. For each individual, the following data
were recorded: sex, age, bodymass index (BMI), prior diagnosis
of diabetes mellitus, type of organ or histology of malignant
tumor that underwent PET scan, injected dose of FDG, time
interval between FDG administration and imaging, pre-scan
BGL, and SUV measurements (SUVmax and/or SUVmean).

Quality assessment

Two authors independently assessed quality of included stud-
ies using Newcastle–Ottawa Scale for cross-sectional and
case-control studies [48]. This scale rates studies on three
major domains: selection (four scores), comparability (two
scores) and ascertainment of outcome of interest (three
scores). Studies with between seven and nine scores and be-
tween four and six scores were deemed to have low risk and
medium risk respectively, and studies gaining three or fewer
scores were considered as having a high risk of bias and were
excluded from analysis.

Statistical analysis

Regression analysis of individual patient data was performed
in order to study the correlation between SUV and pre-scan
BGLs. Based on the curve estimation procedure, a linear re-
gression model was the best-fit model for evaluating the rela-
tionship between pre-scan BGL and SUVmeasurements in all
organs. Pearson correlation coefficient, as well as β coeffi-
cient with confidence interval of 95%, was reported.
Multiple linear regression analysis was performed with
SUVmax or SUVmean as dependent variable and pre-scan
BGL, sex, age, BMI, presence of diabetes mellitus diagnosis,
injected dose of FDG, and time interval between FDG injec-
tion and imaging as independent variables. For ANOVA anal-
ysis, patients were categorized into five groups based on pre-
scan BGLs: ≤ 109 mg/dl (euglycemia), 110–125 mg/dl (mild
hyperglycemia), 126–150 mg/dl, 151–200 mg/dl and >
200 mg/dl. These cut-offs for categorization of BGL were
chosen based on suggested pre-scan BGL in SNMMI [39]
and EANM [40] guidelines and definition of euglycemia
[49]. The ANOVA test was performed to compare SUVmax

or SUVmean of the four hyperglycemic groups with the
euglycemic group, andmean difference along with confidence
interval of 95% was reported. All tests were performed for
each organ (tumors, muscle, brain, liver, blood pool) separate-
ly for SUVmax and SUVmean. Moreover, SUVmax of lung tu-
mors was also analyzed as a separate group in addition to
being included in the tumors general group, as it was the only
specific type of tumor with sufficient data available for meta-
analysis. In all analyses, a p value of less than 0.05 was con-
sidered statistically significant. STATA version 15.0 software
(STATA Corporation, College Station, TX, USA) was used
for statistical analysis.
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Results

The computerized search of the literature identified a
total of 2573 unique citations. After screening the titles
and abstracts for eligibility, 330 articles were found to
be potentially relevant and were screened at the full text
level. A total of 31 studies met all eligibility criteria.
Manual search identified one additional unpublished
study [50]. Twelve studies already included numerical
individual data for 721 SUV measurements. Numerical
unpublished individual data from published papers
[50–66] were obtained through contacting corresponding
authors in 17 studies for 21,122 SUV measurements.
Therefore, finally a total of 29 studies provided individ-
ual patient data and were included in meta-analysis.
Figure 1 is a flow diagram describing the stepwise
study selection process according to the PRISMA
guidelines.

Study characteristics and quality assessment

The selected studies included 13 prospective and 16 retrospec-
tive studies, reporting a total of 20,807 SUV measurements
(total 14,879 SUVmax and 5928 SUVmean) in 8380 patients
(14.3% hyperglycemic) between 1992 and 2018 (Table 1).
Quality assessment of included studies based on the
Newcastle–Ottawa Scale indicated that nine out of 29 studies
(31%) carried medium risk for bias, and 20 out of 29 studies
(69%) were judged to have low risk of bias. Quality assessment
did not identify any high-risk study. The main sources of bias
were first the use of hospital controls (euglycemic patients) and
second, lack of scan reviewer blinding to pre-scan BGL of
subjects. Study characteristics as well as results of quality as-
sessment for each included study are summarized in Table 1.
Univariate and multivariate regression analysis adjusting for
sex, age, BMI, prior diagnosis of diabetes, FDG dose and time
interval between FDG injection and imaging were performed in
each SUV/organ group. The status of these covariates in each
SUV/organ group is described in Table 2.

Clinical outcomes

Tumor

Our data included 631 individual SUVmax and 159 individual
SUVmean measurements for tumors, including tumors of brain,
lung, colorectal, stomach, liver, bone, pancreas, breast, lympho-
ma, oropharynx, nasopharynx, thyroid, and melanoma. In uni-
variate linear regression analysis (Table 3), pre-scan BGL level
had a significant inverse relationship with SUVmax (p < 0.001,
r = −0 .14, r2 = 0.02) (Fig. 2) and SUVmean (p = 0.029, r =
− 0.17, r2 = 0.03). However in multivariate regression analysis
(Table 4), no significant relationship was observed between
blood glucose and SUVmax (p = 0.948, r2 = 0.61) and SUV

mean (p = 0.507, r
2 = 0.23). When the regression analyses were

restricted to tumors of lung origin (338 individual SUVmax

measurements), still no significant relationship was found be-
tween BGL and SUV in both univariate (p = 0.079) and multi-
variate analysis (p = 0.505). ANOVA test for SUVmax of tumors
revealed that only the group with BGL of more than 200 mg/dl
had a significantly lower SUV compared with the euglycemic
group (mean difference [MD] =3.49, p < 0.001). ANOVA test
was not performed for SUVmean of tumor since the number of
patients in different BGL groups was not sufficient (Table 5).
ANOVA test for SUVmax of lung tumors showed no significant
differences in SUVs of the euglycemic group compared to dif-
ferent hyperglycemic groups.

Muscle

Our data included 600 individual SUVmax and 2156 individ-
ual SUVmean measurements for muscle. In univariateFig. 1 Flow diagram of the study selection process
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regression analysis (Table 3), an inverse statistically signifi-
cant relationship was found between BGL and SUVmax of
muscle (p < 0.001, r = −0 .28, r2 = 0.08). However, this in-
verse relationship was not statistically significant for
SUVmean (p = 0.124, r = −0 .03, r2 = 0.001). In multivariate
analysis (Table 4) both SUVmax (p < 0.001, r2 = 0.16) and
SUVmean (p < 0.001, r2 = 0.63) were significantly correlated
with pre-scan BGL. In ANOVA test for SUVmax of muscle,
all hyperglycemic groups had significantly lower SUVs than
the euglycemic group. However for SUVmean of muscle, this
difference was statistically significant for two out of the four
hyperglycemic groups (110–125 mg/dl, 125–150 mg/dl,
Table 5).

Brain

Our data included 6056 individual SUVmax and 457 individ-
ual SUVmean measurements for brain. In univariate regression
analysis (Table 3) there was a significant inverse correlation
between pre-scan BGL and SUVmax (p < 0.001, r = −0 .42,
r2 = 0.18) (Fig. 3) and SUVmean (p < 0.001, r = − 0.58, r2 =
0.34) (Fig. 4). This significant inverse relationship maintained
in the multivariate analysis (Table 4) both for SUVmax

(p < 0.001, r2 = 0.31) and SUVmean (p < 0.001, r2 = 0.4). In
ANOVA test, SUVmax and SUVmean of all hyperglycemic
groups were significantly lower than the euglycemic group
(Table 5).

Table 1 Characteristics of included studies

Author/ref Year Design No of patients Included organs Risk of bias

Selection Comparability Outcome Final score

Sprinz [66] 2018 R 5623 liver, brain 2 2 3 7

Viglianti [63] 2017 R 229 muscle, liver, brain, blood pool 2 1 3 6

Viglianti [50] 2017 R 100 muscle, liver, brain, blood pool 2 1 3 6

Tatcı [61] 2017 R 28 tumor of Hodgkin’s lymphoma 2 2 3 7

Cheung [55] 2017 R 19 tumor of oropharynx 2 2 3 7

Werner [53] 2017 R 18 tumor of thyroid 2 2 3 7

Lococo [52] 2016 R 94 tumor of lung 2 1 3 6

Keramida [60] 2015 R 304 liver 2 1 3 6

Rubello [67] 2015 R 50 liver, blood pool 2 1 3 6

Schildt [57] 2015 R 29 liver, blood pool 2 2 3 7

Barwick [65] 2014 R 159 blood pool 2 2 3 7

SanchoMunoz [62] 2014 R 60 muscle 2 1 3 6

Lindholm [56] 2013 R 500 muscle, liver, blood pool 2 1 3 6

Iwano [58] 2013 R 178 tumor of lung 2 2 3 7

Boktor [59] 2013 P 132 liver, blood pool 2 2 3 7

Caobelli [51] 2013 P 130 muscle 2 1 3 6

Garcia [54] 2013 P 120 muscle 2 2 3 7

Mirpour [68] 2012 R 76 tumors of breast, colorectal, head and neck,
lymphoma, melanoma, lung

2 2 3 7

Bybel [64] 2011 P 154 liver 2 2 3 7

Harisankar [69] 2011 P 110 liver 2 2 3 7

Huang [70] 2011 P 16 tumor of nasopharynx 2 1 3 6

Janssen [71] 2010 P 30 tumor of rectum 2 2 3 7

Hara [72] 2009 R 54 tumors of liver, bone, lung, pancreas,
oral cavity, stomach

2 2 3 7

Nakamoto [73] 2002 P 10 tumor of lung 2 2 3 7

Koyama [74] 2001 P 86 tumor of pancreas 2 2 3 7

Minn [75] 1995 P 10 tumor of lung 2 2 3 7

Minn [76] 1993 P 46 tumor of head and neck 2 2 3 7

Ishizu [77] 1993 P 10 brain and tumor of brain 2 2 3 7

Lindholm [78] 1992 P 5 tumor of head and neck 2 2 3 7

Abbreviations: No number, R retrospective, P prospective
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Liver

Our data included 6680 individual SUVmax and 1805 individ-
ual SUVmean measurements for liver. In univariate regression
analysis (Table 3), a significant and positive correlation was
found between pre-scan BGL and both SUVmax (p < 0.001,
r = 0.25, r2 = 0.06) and 1805 SUVmean (p < 0.001, r = 0.23,
r2 = 0.05). In multivariate analysis (Table 4), the positive rela-
tionship between pre-scan BGL and SUVs remained statisti-
cally significant for both SUVmax (p = 0.001, r2 = 0.16) and
SUVmean (p = 0.004, r2 = 0.2). In ANOVA test, all four hyper-
glycemic groups had significantly higher SUVmax and
SUVmean compared with the euglycemic group (Table 5).

Blood pool

Our data included 912 individual SUVmax and 1351 individ-
ual SUVmean measurements for blood pool. In univariate re-
gression analysis (Table 3) there was a significant positive
correlation between BGL and both SUVmax (p < 0.001, r =

0.20, r2 = 0.04) and SUVmean (p < 0.001, r = 0.28, r2 = 0.08).
This relationship was also statistically significant in the mul-
tivariate analysis (Table 4) for both SUVmax (p = 0.008, r2 =
0.29) and SUVmean (p < 0.001, r2 = 0.29). In thewANOVA
test, all hyperglycemic groups had significantly higher
SUVmax and SUVmean in comparison with the euglycemic
group, except for the mild hyperglycemic group(110–
125 mg/dl) for SUVmean (MD = 0.06, p = 0.756) (Table 5).

Discussion

In this meta-analysis of individual data, through multivariate
regression analysis, we showed that pre-scan BGL is inversely
correlated with SUV in brain and muscle, and positively cor-
related with SUV in liver and blood pool. However, no signif-
icant relationship was found between pre-scan BGLs and
SUVs in tumors. When the SUVs of hyperglycemic groups
were compared with those of the euglycemic group within
each organ, the same pattern was observed, except that when
BGL exceeded 200 mg/dl, tumors were associated with sig-
nificantly lower SUVs compared to the euglycemic group.

Tumor

Based on our multivariate analysis of individual data, pre-scan
BGL had a statistically significant effect neither on SUVmax

and SUVmean of tumors in general, nor on SUVmax of lung
tumors. The ANOVA test showed that tumors in general had
significantly lower SUVmax in BGL group of > 200 mg/dl
compared with the euglycemic group. However, when the
analysis was restricted to only lung tumors, none of the hy-
perglycemic groups had significantly different SUVmax com-
pared with the euglycemic group.

As explained previously, an inverse relationship between
pre-scan BGL and tumoral 18F-FDG uptake was expected,
due to the presumed competition between FDG and

Table 3 Univariate regression
analysis of the correlation
between SUVand blood glucose
level

SUVand organ P value R R-squared β coefficient CI 95%

SUVmax tumor < 0.001 − 0.139 0.019 − 0.017 [− 0.026, − 0.007]

SUVmean tumor 0.029 − 0.173 0.03 − 0.021 [− 0.04, − 0.002]

SUVmax lung tumor 0.079 − 0.096 0.009 − 0.011 [− 0.023, 0.001]

SUVmax muscle < 0.001 − 0.283 0.08 − 0.046 [−0.058, −0.033]
SUVmean muscle 0.124 − 0.033 0.001 − 0.003 [− 0.006, 0.001]

SUVmax brain < 0.001 − 0.419 0.176 − 0.061 [− 0.064, − 0.058]

SUVmean brain < 0.001 − 0.581 0.338 − 0.034 [− 0.039, − 0.03]

SUVmax liver < 0.001 0.251 0.063 0.007 [0.006, 0.007]

SUVmean liver < 0.001 0.232 0.054 0.003 [0.003, 0.004]

SUVmax blood pool < 0.001 0.2 0.04 0.003 [0.002, 0.004]

SUVmean blood pool < 0.001 0.282 0.08 0.004 [0.003, 0.005]

Abbreviations: SUV standardized uptake values

Fig. 2 Scatter plot of individual SUVmax of tumor at different pre-scan
blood glucose levels
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endogenous glucose on the GLUT receptors to enter cells.
Although our univariate regression analysis indicated such
an effect, in multivariate analysis, after adjusting for several
confounding factors, this inverse relationship was not statisti-
cally significant. One may speculate that the heterogeneity in
nature of included tumors in our study might have differen-
tially affected glucose metabolism rate and FDG uptake.
However, even after restricting the analysis to lung tumors,
there was still no significant relationship between BGL and
SUVmax in both univariate and multivariate analysis.

We speculate that these results could be explained by over-
expression and augmented capability of glucose transporters
in the cellular membranes of tumoral cells [28, 79–82]. In
other words, glucose transporters are in such abundance in
the malignant tissue that they cannot be saturated even in case
of excessive endogenous glucose; thus there is less, if any,
competition between FDG and endogenous glucose to enter
tumoral cells [83]. Saturation or otherwise is not the issue and
would make no difference. Whatever the mechanism of up-
take, the proportion of glucose in the circulation that is FDG
will decrease the higher the blood glucose; in other words
there is always competition, albeit ‘passive’. Moreover in nor-
mal tissue, glucose metabolism and transportation are con-
trolled by different mechanisms including saturation of
GLUTs [22]. However, in malignant tumors transportation
and metabolism of glucose lack such controls because of the
autonomous nature of malignancies [27, 84]. Thus, hypergly-
cemia may lead to competition between endogenous glucose
and FDG in normal cells but would not have significant effect
on tumors.

In the ANOVA test, hyperglycemia with BGL of 110–
200 mg/dl was not associated with significantly different
SUVs; however the group with BGL of more than 200 mg/
dl had significantly lower SUV measurements compared with

the euglycemic group. This may be caused by the hexokinase
phosphorylation enzymes saturation in the severe hyperglyce-
mia state [85]. Considering the results of the univariate and
multivariate regression analyses, this result might be due to
the effect of confounding factors. Nevertheless, based on these
results we recommend that hyperglycemic patients with BGLs
of less than 200 mg/dl are still appropriate candidates to un-
dergo PET scan, as BGL of less than 200 mg/dl would not
significantly change tumor’s FDG uptake. However, FDG-
PETscan of patients with BGL ofmore than 200 mg/dl should
be conducted with more caution.

Muscle

In the univariate analysis (Table 3), there was a significant
inverse correlation between BGL and SUVmax (p < 0.001),
and no significant correlation between BGL and SUVmean

(p = 0.124). However, in multivariate regression analysis
(Table 4) there was a significant inverse correlation between
BGL and both SUVmax and SUVmean (p < 0.001 for both). In
the ANOVA test of SUVmax, all of the three hyperglycemic
groups had significantly lower SUVs compared with
euglycemia. However, for SUVmean two out of the four hyper-
glycemic groups were significantly different from the
euglycemic group (Table 5).

The results of univariate analysis and ANOVA test could
be explained by the confounding effect of sex (p < 0.001), age
(p < 0.001), BMI (p < 0.001), diabetes (p < 0.001), FDG
injected dose (p < 0.0001), and scan timing (p < 0.001). In line
with this, studies have indicated that muscle metabolism is
age- and sex-dependent [86–88], and the ability of insulin to
stimulate glucose transporters in muscles is impaired in dia-
betes and impaired glucose tolerance [89, 90]. Moreover, pa-
tients with higher BMI have more fat tissue, which has a

Table 4 Multivariable regression analysis

SUVand
organ

P value
BGL

P value
DM

P value
sex

P value age P value BMI P value FDG
dose (mbq)

P value FDG
uptake time(min)

Overall r Overall
r-squared

SUVmax tumor 0.948 0.532 0.928 0.745 0.084 0.133 0.444 0.784 0.614

SUVmean tumor 0.507 0.81 0.728 0.257 0.58 0.388 NA 0.484 0.234

SUVmax lung tumor 0.505 0.1 0.971 0.232 0.504 NA NA 0.628 0.394

SUVmax muscle < 0.001 0.007 0.281 < 0.0001 0.001 0.095 0.002 0.395 0.156

SUVmean muscle < 0.001 < 0.001 < 0.001 < 0.0001 < 0.0001 <0.0001 < 0.001 0.795 0.633

SUVmax brain < 0.001 0.04 0.245 < 0.0001 < 0.0001 0.335 0.424 0.553 0.306

SUVmean brain < 0.001 0.081 0.892 0.962 < 0.0001 0.907 0.012 0.636 0.404

SUVmax liver 0.001 0.989 0.118 0.055 0.215 <0.001 0.188 0.397 0.157

SUVmean liver 0.004 0.445 0.328 0.017 < 0.0001 0.694 0.105 0.445 0.198

SUVmax blood pool 0.008 < 0.001 < 0.001 < 0.001 < 0.001 <0.001 < 0.001 0.759 0.291

SUVmean blood pool < 0.001 < 0.001 0.385 0.004 < 0.0001 0.507 < 0.001 0.539 0.291

Abbreviations: SUV standardized uptake values, BGL blood glucose level, DM diabetes mellitus, BMI body mass index, MBq megabecquerel, min
minutes, NA not available
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relatively low glucose uptake during fasting state [91, 92].
Therefore, a higher proportion of the injected dose of FDG
remains in blood and available for uptake by other organs
including muscles in obese patients.

Collectively, considering the results of multivariate regres-
sion analysis, our study indicates that higher pre-scan BGLs
result in lower muscle SUVs (Table 4). This could be ex-
plained by the competition between excessive endogenous
blood glucose and FDG, and saturation of glucose trans-
porters. However, muscle is known as an insulin-sensitive
tissue. The prominent type of muscle glucose transporter is
GLUT4, which is insulin-dependent [30, 31, 93], in contrast to
tumors which mainly overexpress Glut-1 and Glut-3 trans-
porters, which are not insulin-sensitive [27, 29, 94].
Therefore, one might speculate that hyperglycemic patients
would have higher muscle FDG uptake due to insulin secre-
tion and shift of glucose and FDG into muscle cells. This
could be a correct assumption in acute hyperglycemia (e.g.,
post-prandial state). However, in our study, all included pa-
tients were still hyperglycemic after at least 4 h of fasting
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Fig. 3 Scatter plot of individual SUVmax of brain at different pre-scan
blood glucose levels

Fig. 4 Scatter plot of individual SUVmean of brain at different pre-scan
blood glucose levels
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before PET scan. Therefore, they must have had at least some
degree of insulin resistance, even though some of them were
not yet diagnosed as diabetic patients. As in normal conditions
(i.e., no insulin resistance), blood glucose should return to
normal levels during the 2 h after ingestion [95, 96]. Several
studies have shown that insulin resistance counteracts shifting
of glucose to muscle cells by diminishing GLUT4 expression,
suppressing glycolysis, and increasing glucose-6-phosphate
levels [97–99], all of which lead to increased fasting BGLs.
In summary, our results suggest that in patients who are hy-
perglycemic after at least 4 h of fasting, muscle cells are rela-
tively insensitive to effects of insulin in terms of increasing
blood glucose and FDG uptake. Therefore, the competition
between excessive endogenous glucose and FDG in entering
muscle cells and decreasing GLUT4 expression on cell mem-
brane due to the insulin resistance leads to decreased FDG
uptake.

Brain

In both univariate and multivariate analyses, increased pre-
scan BGLs resulted in significant decreases in SUVmax and
SUVmean in brain (p < 0.001 for both, Fig. 4). Moreover in the
ANOVA test, all hyperglycemic groups had significantly low-
er SUVs than the euglycemic group for both SUVmean and
SUVmax. These results also could be explained by the compe-
tition of FDG and glucose on the membrane GLUTs in the
blood–brain barrier. Moreover the main expressed GLUTs in
blood–brain barrier and neurons are GLUT-1 and GLUT-3
which are not insulin-sensit ive [100, 101]; thus,
hyperinsulinemia during hyperglycemia would not have any
effects on FDG uptake in brain.

Liver

In both univariate and multivariate analysis, a positive corre-
lation was found between pre-scan BGls and both SUVmax

and SUVmean for liver. Moreover, the ANOVA test showed
that this effect of BGL on SUV exists in all hyperglycemic
levels since all hyperglycemic groups had significantly higher
SUVs compared to the euglycemic group.

Liver is the key organ responsible for regulation of blood
glucose through gluconeogenesis and glycogenolysis. During
hyperglycemia, liver is the major site of glucose utilization,
accounting for uptake of approximately 50% of the ingested
glucose [102–104]. In hepatocytes, glucose is phosphorylated
by hexokinase to glucose-6-phosphate and then converted to
glycogen and stored. Even when the hepatic reserve for gly-
cogen is complete, excess blood glucose is converted into fat
by hepatic de novo lipogenesis [105, 106]. Moreover, promi-
nent hepatic GLUT is GLUT-2 which is a bidirectional glu-
cose transporter that allows fluxes of glucose in and out the
cells based on its diffusion gradient, and is not a saturable

transporter [107]. Moreover, liver is a highly vascularized or-
gan with high storage of blood [108, 109]. Thus, the effect of
hyperglycemia on the 18F-FDG uptake in liver also could be
explained by mechanisms affecting the blood pool (see
“Blood pool” section below). Therefore as blood glucose in-
creases, liver glucose uptake increases as well since the liver is
the main organ responsible for storing excess blood glucose,
and this capacity of the liver could overcome the competition
between blood glucose and FDG.

Blood pool

In univariate and multivariate analysis of mediastinal blood
pool, a direct relationship was found between pre-scan BGL
and both SUVmax and SUVmean (p = 0.008 and p < 0.001 re-
spectively). Moreover, in the ANOVA test almost all hyper-
glycemic groups had significantly higher SUVs than the
euglycemic group. It could be explained by the fact that
GLUT-1 is the main expressed GLUT in red blood cell
(RBC) membrane which is not insulin dependent [22, 110];
thus, insulin resistance would not affect FDG uptake in RBCs.
Moreover, it has been shown that chronic hyperglycemia in-
creases the density of GLUTs in RBC membranes [111].
Therefore, RBCs take up more FDG in patients with impaired
fasting glucose than in euglycemic patients.

Limitations

Although this systematic review and meta-analysis included
29 studies and 20,807 individual SUVs and pre-scan BGLs,
there are some limitations that have to be addressed. First,
many of the included studies were of retrospective design,
which can potentially lead into selection bias. Although pa-
tients in euglycemic and hyperglycemic groups were not
paired by sex, age, BMI, injected dose of FDG, time interval
between FDG injection and imaging, and diagnosis of dia-
betes, this information was available for most of the individ-
ual data and was taken into account in our multivariate anal-
yses. Nevertheless, there are some other factors theoretically
capable of confounding the effect of BGL on SUV that
could not be incorporated into our analysis, such as scanner
resolution, reconstruction methods, region of interest mea-
surements (a segmentation type processes or a fixed size
region for SUVmean of tumors), exact duration of fasting,
and serum levels of insulin. Second, we were not able to
investigate the effect of BGL on sensitivity and specificity of
PET scan in diagnosis of malignant lesions. Third, we were
not able to investigate the effect of BGL on tumors sepa-
rately based on their specific origin and histopathology, ex-
cept for lung tumors, due to limited data available for each
type of tumor.
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Clinical points and conclusions

Based on this systematic review andmeta-analysis of individual
patient data, patients who are still hyperglycemic after at least
4 h of fasting would have significantly lower FDG uptake in
brain and muscle and significantly higher FDG uptake in liver
and mediastinal blood pool in comparison with euglycemic
patients. However, BGL does not have any apparent significant
effect on FDG uptake of tumors. Therefore, it seems that FDG
uptake ratio of tumor to background normal tissues in which
they are located would not decrease during hyperglycemia.

Current available PET-scan preparation protocols suggest
rescheduling the scan or consideration of rapid-acting insulin
injection prior to PET scan or scan rescheduling in patients
with hyperglycemia ranging from 120 mg/dl to 200 mg/dl,
and recommend inconsistent and diverse cut-offs for insulin
injection or scan rescheduling [39, 40]. This approach may
lead to increased costs, inconvenience for patients, unneces-
sary postponing of PET scan, and delays in diagnosis of po-
tential malignancies, or the possibility of insulin-induced FDG
shunting from tumors to muscles, thus decreasing tumor to
background FDG uptake ratio [42, 112, 113]. Our results pro-
vide credible level 1 evidence on the influence of BGL on
FDG uptake, which is much needed in order to reach an
evidence-based consensus in regard with preparation proto-
cols needed to handle the issue of hyperglycemia in PET scan.

Considering the lack of significant correlation between BGL
and FDG uptake in tumors, we recommend that no interventions
— whether insulin injection or scan rescheduling— are needed
for hyperglycemic patients who are scheduled to undergo PET
scan, except in the following two conditions. First, BGL>
200 mg/dl. As our ANOVA analysis indicated decreased FDG
uptake of tumorswhenBGL is above 200mg/dl, we recommend
that BGL be kept under this threshold, as there is the possibility
of decreased tumor-to-target uptake ratio and hence impaired
scan sensitivity. Second, when liver is the area of interest.
FDG uptake significantly increases in liver during hyperglyce-
mia for reasons explained above. As our ANOVA tests showed
significantly increased SUVs in all ranges of abnormal fasting
BGLs — even in the mild hyperglycemic group with blood
glucose level of 110–125 mg/dl— we recommend that if feasi-
ble, patients should be kept euglycemic (BGL ≤ 110 mg/dl)
when assessment of liver is intended , so as to prevent decreased
tumor-to-target uptake ratios.

It should be noted that our results and recommendations
should not be considered for acute post-prandial hyperglyce-
mia, where influx of FDG into the insulin-sensitive muscle
cells results in a so-called “muscle view” in PET scan [42,
114]. Finally, we hope that future controlled prospective stud-
ies specifically designed to evaluate sensitivity and specificity
of FDG-PET scan in diagnosis of malignant lesions in hyper-
glycemia compared with euglycemia will further elucidate the
effects of BGL on FDG-PET scanning.
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